
ScooPy: Enhancing Program Synthesis with
Nested Example Specifications

Tomer Katz

Technion

Haifa, Israel

tomerkatz@campus.technion.ac.il

Hila Peleg

Technion

Haifa, Israel

hilap@cs.technion.ac.il

Figure 1. Synthesizing code from nested example specifications using ScooPy: 1 an example scope with one input-output

example. Variable states at input and output are separated by the => arrow. The example is used as a test for the code within

the scope, providing live feedback that the code fails for this input-output pair. 2 , 3 An outer and an inner scope with code

that is correct for their examples. 4 When the programmer moves their cursor to a scope and types !!, 5 that scope and all

the scopes nested within it are sent to the synthesizer. 6 A synthesis result is returned to the file. Examples and their nesting

are preserved and the code is updated to satisfy the examples.

Abstract
Current IDE-integrated program synthesis leaves no indi-

cation of what code was auto-generated, let alone an ex-

planation of why. This makes both identifying and under-

standing machine-generated code hard. We therefore add

example scopes, comments enclosing synthesized code that

document the input-output examples that created it. This

also allows programmers to manually edit examples and

re-launch the synthesizer without tediously re-entering the

examples. Scopes are simply text, and so can be created any-

where, including inside other scopes. However, synthesizers

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

Onward! ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2151-9/25/10

https://doi.org/10.1145/3759429.3762619

can only reason about one flat example set. To address this,

we introduce ScooPy, IDE-integrated program synthesis for

nested example specifications. ScooPy lets programmers edit

example scopes, see live information based on the examples,

and call the synthesizer on nested scopes. In two user stud-

ies with 6 and 16 participants we see that example scopes

increase users’ engagement with the code and that ScooPy

improves users’ ability to synthesize for some types of tasks.

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments.

Keywords: program synthesis,interaction model

ACM Reference Format:
Tomer Katz and Hila Peleg. 2025. ScooPy: Enhancing Program Syn-

thesis with Nested Example Specifications. In Proceedings of the
2025 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’25), October 12–18, 2025, Singapore, Singapore. ACM, New York, NY,

USA, 20 pages. https://doi.org/10.1145/3759429.3762619

https://orcid.org/0009-0004-4156-5398
https://orcid.org/0000-0002-0107-5659
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759429.3762619
https://doi.org/10.1145/3759429.3762619

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

1 Introduction
Program synthesis generates code in response to a user-

provided specification. In recent years, program synthesis

has been incorporated into development environmentswhere

it can accept user specifications and insert the resulting pro-

gram directly into the user’s code file [1, 13, 14, 16]. Once

added to the file, synthesized code is no different than any

human-written code. Once time passes, and the code is added

to the project’s source control, it cannot be traced back to

the synthesizer, only to the user who ran it. In such a case,

a programmer—the same one who synthesized the code or

a different one—may return to a piece of code in order to

debug, modify, or extend it and wonder: did I write this or

did the synthesizer? And why did it end up like this?

Moreover, it matters not only that the code was synthe-
sized but what it was synthesized from. If the code was gener-

ated as prefix completion from a generative model (e.g., [1]),

there is no simple way to explain where it came from. But if

the synthesizer is specified using Programming-by-Example

(PBE) [5, 11, 16, 18], a modality where the generated pro-

gram is guaranteed to satisfy a provided set of examples,

seeing the examples provided to the synthesizer is helpful

for anyone returning to the code. For instance, the user may

remember that the code

1 t = str(len(s)) + s[0]

was generated by a synthesizer, but not why. A programmer

using small-step PBE [14], i.e., advancing through the prob-

lem in small, relatively linear chunks, and generating code

from examples for each such chunk, will have many such

lines strewn throughout their code.

An immediate solution to this is to document synthesized

code as such via code comments. Code generation frame-

works [8, 17] use this for the separate, generated code files,

as do integrated code generators [33]. For inline synthe-

sized code, the comment needs to serve two needs: to show

what input was provided to the synthesizer, and to delin-

eate exactly what code was specified, as this may be several

lines. The first need is served by including the programmer-

provided specifications as a documentation of the synthe-

sizer’s input in the format input => output, and the second

by the synthesizer outlining the scope of the synthesized

code. Together, they form an example scope:

1 #! Start of specification scope:

2 #! 1) s = 'ddd' => t = '3d'

3 #! 2) s = 'cc' => t = '2c'

4 t = str(len(s)) + s[0]

5 #! End of specification scope

The information that example scopes contain can be lever-

aged in a myriad of ways to interact with and comprehend

the synthesized code. i) The textual representation of the

examples can be edited by the programmer and re-sent to the

synthesizer. This means, e.g., correcting a slight error in the

entered specifications does not require the programmer to re-

enter all specifications (something users of previous systems

complained about [13]). ii) This also creates a keyboard-only

mechanism for interacting with the synthesizer, one that

does not change the focus to any other windows as previ-

ous synthesizers do. iii) Moreover, if the user does not like

the result, they can incrementally refine the specification by

adding more examples. The persistence of previous exam-

ples makes searching for a differentiating example (a task

previously shown to be hard [35]) easier for the programmer.

iv) Finally, the enclosed code can be executed on its examples,

providing live feedback [42] that changes as the code or the

examples change. This helps programmers better understand

the code and raise their confidence in its correctness.

In an unconstrained tool, the programmer can edit any of

the text—code or comments—in any way, and call the syn-

thesizer anywhere, and even cut and paste synthesized code

(behavior observed by Ferdowsifard et al. [14]). These can

lead to example scopes that are nestedwithin each other, as in

Figure 1. Both bottom-up and top-down approaches to code

construction [9] can cause a new scope to be added around or

inside an existing scope, and the result is the same: specifica-

tions that cannot be sent to current PBE synthesizers, which

can only handle “flat” example sets. To allow unconstrained

editing and synthesis, our system must respect and accept

nested scopes in both interaction and synthesis.

To support this workflow, we designed ScooPy,
1
a develop-

ment environment and synthesizer that support hierarchies

of example scopes. ScooPy extends the LooPy synthesizer

and development environment [13], which neither docu-

ments synthesis results with an example scope nor support

any nesting of example specifications. ScooPy’s development

environment offers the programmer easy ways to create and

edit example scopes, and provides live feedback on the code

inside the scopes based on those examples. This includes

treating examples as tests and highlighting passing and fail-

ing tests in the editor. Additionally, since nesting makes it

harder to reason about the full specification, ScooPy helps

the programmer identify some contradictions in their specifi-

cations, stopping them from launching the synthesizer for

a task that will certainly fail. Finally, ScooPy lets the pro-

grammer launch the synthesizer from any example scope to

synthesize a result for it and any scopes nested inside of it.

To synthesize with nesting, the ScooPy synthesis algo-

rithm extends LooPy’s, using a syntax-guided approach to

ensure all nested scopes of examples are considered by the

synthesizer. This breaks the hierarchical specification into

sub-goals, addressed by several synthesis calls. Each scope

is then required to use code that satisfies any nested scopes.

This choice satisfies our design goals, that no internal scope

goes unaddressed by the synthesizer, and that the result be

1https://github.com/tomerkatz2001/ScooPy.git, VM with ScooPy prein-

stalled is available at https://doi.org/10.5281/zenodo.16933581.

https://github.com/tomerkatz2001/ScooPy.git
https://doi.org/10.5281/zenodo.16933581

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

sound: if a program is found, then it is correct, i.e., satisfies

all provided examples including all nested examples.

To evaluate ScooPy we conducted two user studies: one,

a within-subjects study on 6 participants, evaluating only

the liveness and editing of example scopes, and the second,

a between-subjects study on 16 participants, evaluating syn-

thesis with ScooPy. Our results show that example scopes

increase users’ engagement with the code, and users react fa-

vorably to live feedback based on them. Moreover, ScooPy’s

ability to handle nested scopes helped participants better

achieve synthesis objectives in some types of tasks.

We also conducted an empirical evaluation of ScooPy’s

back-end. Using 50 benchmarks, we measured the synthe-

sizer’s runtime and the number of nested examples required

to solve programming tasks, and compared the results with

those of LooPy. Additionally, we evaluated the accuracy and

runtime of large languagemodels (LLMs) on the same synthe-

sis tasks and compared their performance with our synthesis

algorithm. Our results show that ScooPy solved most of the

benchmarks in less time and with fewer examples.

This paper makes the following contributions:

⊲ Automatic documentation of synthesized code with an

example scope that also records with what examples the

code was synthesized.

⊲ An interaction model that helps programmers edit exam-

ple scopes and leverages them to provide live feedback

and warnings for synthesis calls that will fail.

⊲ A new syntax-guided synthesis algorithm that uses the

structure of the scopes to ensure nested examples are not

discarded and a sound result is returned.

⊲ Two randomized controlled studies of ScooPy exploring

the impact of its interaction and synthesis capabilities.

⊲ An empirical evaluation showing ScooPy’s synthesis al-

gorithm’s advantage in speed and number of examples

needed.

2 ScooPy by Example
Eunice, a programmer, is asked to write a run-length en-

coding compression function in Python, the kernel step of

which is shown in Section 1. Since she uses program syn-

thesis in her day-to-day work, she employs it in this task.

She has a high-level idea of the solution: iterating over the

input with three variables: last character seen, count of the

number of times it was seen, and an accumulator rs to save

the result. She first writes the for loop and the skeleton for

the conditional for checking if the current character is new.

The case where c == last (then branch) is simple enough,

and Eunice writes it herself. The else branch is more compli-

cated, and Eunice synthesizes it using LooPy’s ?? shortcut:

Eunice uses LooPy’s live values to provide one example

for the full else block. The synthesizer inserts the result into
the code, documenting it with an example scope:

The example in the scope is colored green, indicating that

when the code inside the scope is run on the example’s input,

variable values after it match the example’s output.

Since only the else block is specified, Eunice wraps the

whole loop body with another example scope: she selects

the entire conditional and presses Ctrl + #

3 . This creates the

scope’s header and footer around the block and lets her enter

examples. Since Eunice is an experienced synthesis user, she

always specifies conditionals with at least two examples, one

for each branch. However, Eunice makes a typo when enter-

ing the output for the example specifying the else branch,
entering the string '2s' instead of '2a'. This causes a conflict:
there are now two examples with the same input specify-

ing two different outputs. Simply put, there is no longer a

program that can satisfy all examples. Despite the fact the

two examples are not in the same example scope, ScooPy

can help!

ScooPy recognizes the conflict and immediately indicates

to Eunice which examples are the problem. Moreover, if

Eunice tried to call ScooPy’s synthesizer now, she would get

a warning. Eunice inspects the conflict and decides that the

else block is sufficiently covered by the inner example, so

she deletes the second example of the outer scope, which

resolves the conflict.

Eunice now notices a bug in the else branch: the synthe-
sized assignment rs = '2' + last is overfitted. Eunice deletes

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

the line and calls the synthesizer again only for this assign-

ment, providing two examples. This synthesizes the correct

assignment and brings Eunice to the state of the code shown

in Figure 1. However, once this assignment is replaced, the

middle block (1) no longer satisfies its example. While

Eunice may not immediately see why (the order of the as-

signments is wrong), she can easily see that the example does

not hold: ScooPy provides this information as live feedback

by coloring the example in red.

While Eunice could continue debugging the codemanually

with the help of the live feedback from the example scopes,

she instead invokes the synthesizer: placing her cursor at the

outer-most scope, she presses ! ! , which sends the example

scope at the cursor and all its nested scopes to the ScooPy

synthesizer (5). ScooPy synthesizes a new solution that

satisfies all examples while maintaining their hierarchical

nature and replaces it in the editor:

The live feedback for all example scopes is now green,

since all code enclosed by a scope satisfies the examples.

Since this code is synthesized, this is by construction.

A demo video of this example in ScooPy can be found in

the supplementary material.

3 Background and Related Work
In this section, we review the current state of tool-embedded

program synthesis, and provide background on the tech-

niques ScooPy extends and builds on.

3.1 Synthesis from Examples
Programming-by-example (PBE) [25] is a program synthesis

paradigm where calls to the synthesizer are specified with

input variable values and their respective outputs, effects, or

variable values after the run, and is handled by a variety of

specialty algorithms [2, 4, 18, 43] many of which are domain-

specific [6, 44, 47, 52].

PBE tools that output programs into a more general de-

velopment environment [5, 11, 16, 18, 53] often lose connec-

tion between the original specification and the synthesized

code [11, 13, 14, 16]. New versions of FlashFill [18] within

Microsoft Excel keep cells filled in by synthesis separate

from user-provided cells until their content is accepted by

the user, but after that the distinction is lost. Santolucito et al.

[37] relies on a specification file kept alongside the code file

to provide examples at the function level. Section 4.1 will

describe how ScooPy maintains the connection between syn-

thesized code and specification, which enables editing and

liveness capabilities in the IDE.

Current PBE synthesizers only handle a “flat” specifica-

tion: one or more examples all specifying the same code

at the same level. Sub-goals in PBE remain an open prob-

lem, sometimes relying on user-provided task decomposi-

tions [14, 21, 49], and otherwise explored for techniques to

synthesize recursive programs [2, 32, 34, 50]. Extending inner
specifications to an outer scope can work forward via execu-

tion and even backwards over some language constructs [29],

but it requires assuming that the code within the scope is

correct. If the programmer is calling the synthesizer to fix

a scope where the examples do not hold, this cannot be as-

sumed. Section 4.2 will describe the new ScooPy synthesis

algorithm designed to respect example specifications nested

inside each other, without any additional assumptions.

3.2 Supporting Users of PBE
Jayagopal et al. [19] showed that programmers favor syn-

thesis tools that allow them to mix editing and synthesis in

the same interface. ScooPy incorporates synthesis within

the editor, allowing the programmer to mix synthesis with

editing of both code and specifications. Specifically, editing

the specifications to fix mistakes or refine them has been a

user pain point before in PBE [13, 35], especially since PBE

synthesizers tackle the inherent underspecification of exam-

ples by asking users to provide more examples to clarify their

intentions. Some synthesizers help users disambiguate their

intent by providing them with new inputs to specify the out-

puts for [20, 30, 46, 52], but this may not be sufficient to find a

differentiating example that both exemplifies intended behav-

ior and rules out a current bad program, a problem shown

by Peleg et al. [36] to be time-consuming for users. Some

tools allow disambiguation via other means than additional

examples [35, 36, 51, 52]. However, these disambiguation

interactions take place in specialized interfaces.

ScooPy also provides programmers with live feedback by

treating example scopes as localized tests. Testing within a

unit is not a new concept. It was used to locally test whole

functions [12], provide inputs for individual code blocks [23],

and even single statements [27]. Liu et al. [26] also support

extracting such local tests from separate unit tests. All of

these were shown to be helpful in a variety of programming

tasks like debugging and code comprehension.

Jayagopal et al. also noted the importance of feedback from

the synthesizer in the case of failure to find a program. In PBE

one cause of failure is specifying an outright contradiction:

the same inputmapping to two outputs is a specificationwith

no solution. While some synthesizers explicitly explain why

such contradictions hard to test (e.g., Osera and Zdancewic

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

Figure 2. Synthesizing using live values in LooPy: the user

assigns output values to variables count and rs to pair with a

live input state from the Projection Box.

[34]) the standard behavior of synthesizers is to assume this

is the user’s responsibility, and the search will time out if

there is a contradiction. Because contradictions in a nested

specification can be harder to identify, ScooPy also provides

as much assistance as possible in conflict identification.

3.3 The LooPy Synthesizer
ScooPy extends LooPy [13], a PBE synthesizer embedded in

the Live Programming environment Projection Boxes [24]

inside VS Code [31]. LooPy leverages the available live val-

ues provided by Projection Boxes as inputs, only requiring

the programmer to provide outputs. Its user interface for

entering examples is seen in Figure 2.

LooPy’s synthesis algorithm can synthesize assignment

statements, sequences of assignments, and conditional state-

ments containing assignment sequences. However, to do so,

it requires programmers to provide block-level specifications:
to specify full blocks of code with end-to-end examples that

contain output values for all variables in the block. This

is in contrast with small-step PBE [14] where the program-

mer advances through the program one statement at a time,

thinking through the problem in small chunks.

The compress function shown in Section 2 was also the

motivating example for LooPy. There, the programmer not

only had to provide at least five examples in order to solve it,

but every example had to describe the behavior of the entire

loop iteration, for all variables. ScooPy’s example scopes,

however, let the programmer think about smaller pieces of

the program, and to exclude variables that do not matter like

s in all scopes or c in the inner-most scope. Not only are

these examples easier to provide, the programmer also needs

to provide fewer examples overall.

4 The ScooPy System
ScooPy is built on top of LooPy’s live PBE interaction model,

extending it with four main concepts: i) persisting the exam-

ples used to call synthesis, ii) editing example scopes, iii) live
feedback for the scopes, and iv) synthesizing nested example

scopes. Section 4.1 describes the editing and liveness exten-

sions in greater detail, and Section 4.2 describes the changes

to the synthesis algorithm.

(a) ScooPy helps the programmer add a new example in the correct

format by providing a table to fill.

(b) Line 3 is green to denote that line 4 satisfies the example. The

Projection Box for line 4 shows values of live variables.

(c) Line 4 is red to indicate line 5 does not satisfy the example.

Hovering over line 4 shows what output variables are incorrect.

Figure 3. Example scopes in VS Code with ScooPy.

4.1 Editing and Liveness of Example Scopes
4.1.1 Persisted Example Specifications. Two use-cases

motivate the persisting of synthesis specifications, each con-

tributing goals for our design. First is the need to identify

synthesized code and what specification caused it to be gen-

erated. This indication should follow the code into version

control, and remain even if the programmer edits some of

the code. We notice this has no bulletproof solution: pro-

grammers who edit synthesized code may wind up entirely

replacing the code within an indication of synthesis; like-

wise, they can manually remove any indication left by the

tool that the code was originally synthesized.

Second, as noted by users in the studies for synthesis tools

LooPy and SnipPy, once the specification was sent to the

synthesizer it disappeared, so if the programmer needed it

again to a) reflect, b) fix a typo, c) refine it (i.e., add exam-

ples), or d) make a behavioral change, they had to re-enter all

examples from scratch. The inability to fix a mistake, in par-

ticular, was a great pain point for LooPy’s users [13, Section

8]. The examples themselves, then, should persist alongside

the code.

Persisting the examples as code comments is inspired

by previous work providing localized execution inputs or

tests [12, 23, 26, 27]. These share the approach of storing

values as comments in the code file, with IDE support for

displaying the values, evaluating, and visualizing the out-

come. We choose the format of input => output, to be read as
“if the input values are so, then the output values will be so”,

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

where input and output indicate variable values immediately

before and immediately after the code in the scope.

Because snippets returned from the synthesizer can be

part of a larger block of code, we cannot follow the lead

of previous work [12, 23] and use the end of the function

or Python scope to terminate an example scope; instead

ScooPy’s example scopes need to open and explicitly close.

In the IDE, the start and end of a scope are connected by an

indent guide for ease of reading.

4.1.2 Editing and Synthesizing Example Scopes. Ex-
ample scopes are, at their heart, still example specifications.

This means they can be passed back to the synthesizer to

re-synthesize. When a programmer calls the synthesizer with

their cursor at an example scope, that scope and any scopes

nested within it will be sent to the synthesizer. Any other

code, including other enclosing scopes will not be affected.

The resulting code will replace the entire scope, and will still

persist the examples, including in nested parts of the result,

as shown in Section 2.

Because example scopes are a structured format of Python

comments, the programmer can easily edit them. This makes

re-running the synthesizer with corrected or extended spec-

ifications simple.

And, of course, to the synthesizer there is no difference

between an example scope created by the synthesizer and

one in the same format entered by the user. This creates

a keyboard-only interface with the synthesizer, where the

programmer manually adds an example scope and sends it

to the synthesizer.

For users who do not want to work only in text, ScooPy

also supports adding more examples via a table to fill (Fig-

ure 3a) similar to the box for collecting examples for a new

synthesis task (Figure 2).

4.1.3 Live Feedback from Example Scopes. ScooPy is

built on top of LooPy, itself incorporated in the live pro-

gramming environment Projection Boxes [24]. This means

LooPy continually displays runtime values as a means to

providing feedback about the program as it is being writ-

ten. This is seen side by side with ScooPy in Figure 3c. The

examples for synthesis can originate from the Projection

Boxes runtime values but can also be manually entered via

an example scope. Incorporating them into the Projection

Boxes can cause confusion.

The live feedback ScooPy offers, then, is centered around

the textual comments of the example scope. It constitutes an

additional layer of liveness for the code. The advantage of
this is that this feedback is still available when Projection

Boxes are not, e.g., if the current function is not executed.

Examples as tests. In the spirit of Du et al. [12], Lerner

[23], and Liu et al. [27], ScooPy considers each example in

an example scope as a test for the code inside the scope,

including the code inside any nested scopes. The code is

(a) Additional information about a conflict.

(b)Warning when the user tries launching synthesis with a conflict.

Figure 4. ScooPy highlights the conflict between two exam-

ples. Each example in the conflict is highlighted in orange.

continually evaluated on the input values in the examples

and compared to the output values. In Figure 3b the example

is colored green since the code inside the scope satisfies

it, and in Figure 3c the example that does not hold is red.

In scoped code inserted by the synthesizer, all examples

are initially colored green, as synthesized code is correct
by construction with respect to the examples provided for

synthesis. However, users can edit both the examples and the

code inside the scope, including adding more examples that

did not participate in synthesis. Any edit can cause a “failing

test” that is immediately indicated to the programmer.

Conflict Identification. When a user provides examples,

they can wind up specifying an empty set of programs. In

PBE, there are many ways to specify something outside the

synthesizer’s space, but the only real contradiction is two

examples with the same input and different outputs. For the

most part, synthesizers assume consistency of the provided

examples, which is the user’s responsibility. However, nested

example scopes are more complex, and the programmer can

more easily miss a contradiction if the contradicting exam-

ples are not within the same scope, as shown in Section 2.

If the programmer creates a scopewith two examples, both

with the same input state but with different output states,

this is easily identifiable as a contradiction, and ScooPy will

highlight the two contradicting examples in orange, as seen

in Figure 4. However, the freedom that ScooPy affords users

allow for two complications: (1) conflicting examples in dif-

ferent scopes and (2) examples that specify different sets of

variables.

If the two examples are in different scopes, the same input

with two outputs is no longer necessarily a contradiction.

This means ScooPy needs to filter out cases that may have

a solution. If the two scopes follow each other, for example,

they will generate two consecutive assignments and there

is no conflict. Likewise, if they enclose each other but the

inner scope is in sequence with additional statements: if the

solution performs assignments before the inner scope, this

disconnects the identical inputs.

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

for

if-else

c == last

stmts

count = 1

rs += str(count) + last

last = c

count += 1

E2

E3

E1

cond then

else

Figure 5. AST of the loop body in Figure 1. Green boxes

mark the scope specified by the example scopes.

If the examples with identical inputs specify two separate

branches of a conditional, then they specify two unrelated

runs, and are not a problem. However, as will be discussed in

Section 4.2, while this is not technically a conflict, it will fail

when attempting to synthesize the code. As such, ScooPy

will still warn about this case.

Scopes can also specify different variables, both in the

input and in the output. For example, scope 3 in Figure 1

specifies only rs in its output, whereas 1 and 2 specify

rs, count, and last. Likewise, the inputs in 3 do not spec-

ify c, but 1 and 2 do. If a variable is unconstrained in

both the input and output of an example, the example now

describes more than one concrete run of the code. A more

constrained example can conflict with a less constrained one

if the same run occurs in both; ScooPy therefore tests not

only identical inputs, but also subsuming inputs, i.e., if all

the specified variables in one are specified identically in the

other. Likewise for outputs ScooPy tests whether a variable

specified in both outputs is specified differently.

Once a conflict has been identified, it will not only be

indicated in the editor: ScooPy will warn the programmer

if they try running synthesis on the scope or any scope

containing it as shown in Figure 4b.

4.2 The ScooPy Synthesizer
To support the potential nesting of specifications, the synthe-

sizer behind our interaction needs to ensure all examples—or

synthesized code representing them—reach the outer-most

scope where the programmer called synthesis. This ensures

the soundness of the solution: a resulting program will sat-

isfy all of the examples contained in the input, as well as their

structure. In this section, we describe how the synthesizer

scoops the internal example scopes outward, creating multi-

ple synthesis tasks that maintain the division into sub-goals.

This ensures the nested examples are not lost, and has the

potential to make synthesis faster and need fewer examples.

In Section 3.1 we discussed the two problems with ex-

tending an example outward to an enclosing scope: i) the

need to evaluate code backwards, and in particular to find

unknown values before assignments, and ii) the inability to

assume the code is correct. This means we have to look at

each example scope where it is. We want the synthesizer to

use scopes locally, but to also preserve the additional infor-

mation encapsulated in the nesting. To this end we employ

a syntax-guided approach.

The tree structure of specifications. Because specifications
are an enclosing structure over parts of the code, they can be

parsed along with the language. Figure 5 shows the resulting

AST for the specified part of Figure 1, including the exam-

ple scopes enclosing each sub-tree, denoted E1, E2, and E3
matching 1 , 2 , and 3 in Figure 1, respectively. This can

now be incorporated into the tree construction algorithm of

the synthesizer, which, like the original LooPy synthesizer,

forms program trees bottom-up.

Scooping internal examples. ScooPy’s synthesizer scoops
examples by following the AST bottom-up. Each example

scope reached is either reserved as examples or synthesized.

When synthesized, the way its result needs to be reserved

within any enclosing scope is determined by its parent node.

A full version of the algorithm appears in Section A. Based

on LooPy’s original target grammar, our implementation is

concerned with two composition productions: a sequence of

statements and a conditional statement. The third production

in the target language, a single assignment, is always a leaf

in the tree, and so is not involved in scooping.

Scooping conditionals. First, we consider a conditional:

an example scope can specify the entirety of a branch in a

conditional statement, like E1 in Figure 5, or the full condi-

tional, like E2. In total, there may be three example scopes

immediately above and immediately below a conditional.

Considering them at the same level means they can help

the user find a different, better condition for their if state-

ment, or help them refactor the code into straight-line code

that no longer needs the conditional. Lubin and Chasins [28]

observed that programmers often first write code with un-

necessary cases, which is then refactored into a single case;

aiding in this refactoring is itself a use-case for synthesis.

Example scopes that specify the branches explicitly con-

tain additional information: this is a user-provided hint that

if the synthesized solution contains a conditional, these ex-

amples should take the same path in the code’s execution.

(This is trivially true if the solution does not branch.) In other

words, the synthesizer should rule out any boolean condition

that separates them. The ScooPy synthesizer, then, can rule

out the invalid branchings, proceeding to synthesize as usual

afterward.

Scooping sequences. The second production that the synthe-
sizer needs to consider is sequencing: an example scope can

be in a sequence with other statements, which themselves

may or may not be specified. For example, E3 is in a sequence
with the statements before and after it inside the else block.

Assignments before it and possibly-incorrect code after it

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

mean we cannot “stretch” the examples to the scope of the

enclosing block.

Instead, the synthesizerwill synthesize any example scopes

in the sequence, and pass the results up the tree. Any en-

closing scope will then synthesize not only using its own

examples but will also be required to use the synthesis re-

sults from inner synthesis results, implemented using a retain
predicate [35] in its synthesis specification. In Figure 5, the

synthesizer finds rs += str(count) + last as a solution to E3,
which the next synthesis task, that for the conditional, is

then required to use.

More synthesis tasks, fewer examples. One sub-tree with
nested specifications can end up triggering several dependent

synthesis tasks. However, these tasks fare better than a single

large task: both the division into sub-goals and the reduction

in the number of examples each individual task handles

speed up synthesis. Moreover, because nested specifications

are more expressive than top-level examples, the user will

need to provide fewer examples across all scopes than they

would when specifying just at the top level. These are shown

in our additional non-user evaluation in Section 7.

Specifying with different variables. In Section 4.1.3, we

described cases where two examples—that can even be in

the same scope—have different input variables and different

output variables. This is an unusual situation for a PBE syn-

thesizer. To synthesize with such a set of examples, ScooPy’s

synthesizer needs to define the meaning of a missing vari-

able v in an example, which is different in an input or an

output. In inputs, ScooPy considers this variable to have the

value ⊥, i.e., be unavailable. Because ScooPy can synthesize

conditional statements, the solution can have one branch

that handles only examples where v has a value, and so uses

v, and another branch that does not use v at all. If v is missing

from the output of an example, however, we consider it to be

unconstrained (with value ⊤) in that example, i.e., a solution

can assign any value to it in a run on the example’s input.

5 User Study 1: Example Scopes
Our first study is a small-scale, online, within-subjects study

of ScooPy that isolates example scopes and their liveness and

editing features, without the added complexity of synthesis.

This gave us an initial assessment of the value of persisted

examples, as their existence is the assumption the remainder

of the ScooPy system hinges on.
2
The study aims to explore

our preliminary research question:

RQ1 Does persisting specifications in example scopes help

programmers better understand and manipulate syn-

thesized code?

2
Replication package for both studies is available at https://doi.org/10.5281/
zenodo.16937699.

5.1 Method

Participants. We recruited a convenience sample of six

participants (6M), all students at Technion. Two of the partic-

ipants were graduate students and four were undergraduate

with at least two years of industry experience. All had at least

seven years of programming experience, and three years of

Python experience. Participants were compensated $13/hr

for their time.

Tasks. We used the four tasks previously used in the user

study for SnipPy [14], the predecessor to LooPy, where par-

ticipants had originally described issues with the ephemeral

nature of specifications. In our version of the tasks, code

files contained a buggy solution synthesized using small-

step specifications. Each task had two versions, synthesized

with the same sequence of small-step PBE [14] steps: one

constructed from LooPy’s results (i.e., no documentation of

synthesized snippets) and one constructed by ScooPy, where

each small step had its own example scope. Nested example

scopes were not synthesized, so the code in the synthesis

results was identical between settings. A top-level comment

provided several inputs to the function and their expected

outputs, one of which is not satisfied by the program.

Task A. Abbreviate: given a name string, return its initials,

separated by a '.' and in lower-case. This task contained a

typo in the specifications, rather than code overfitted to the

examples.

Task B. Duplicates: given an input string, return how many

characters appear in the input more than once.

Task C. Max and Min: given a string of numbers, return a

string containing the largest and smallest.

Task D. Palindrome: return True if the input string is a palin-

drome when rotated zero or more characters to the left.

The initial code that was given to participants for each

task can be found in the supplementary material.

Methodology. The study took place over a Zoom call, with

full control of the researcher’s computer transferred to par-

ticipant. To answer RQ1, we asked participants to solve two

tasks in LooPy’s editor and two tasks in ScooPy’s. The order

of the tools and tasks was counterbalanced using a Latin

square.

Participants were first shown an introductory video about

program synthesis, where the problem of overfitted synthesis

results was explicitly explained to them, and another video

about using Projection Boxes and ScooPy’s specifications.

For each task, participants were then asked to identify the

cause of the failure andmanually fix the code. Theywere also
asked to inform the researcher when they thought the code

works correctly. Participants who stopped at an incorrect

solution were given another failing function-level test; tasks

had a 25 minute timeout. Participants could not call the

synthesizer.

https://doi.org/10.5281/zenodo.16937699
https://doi.org/10.5281/zenodo.16937699

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

ScooPy LooPy Timeout Average

ScooPy LooPy
P1 p4 p3 p2 p5 p6

0

2

4

6

8

10

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(a) Task A. Abbreviate

ScooPy LooPy
p4 p3 P1 p2 p5 p6

0

2

4

6

8

10

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(b) Task B. Duplicates

ScooPy LooPy
p6 p5 p3 p4 p2 P1

0

2

4

6

8

10

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(c) Task C. Max and Min

ScooPy LooPy
p5 p6 p3 p4 p2 P1

0

5

10

15

20

25

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(d) Task D. Palindrome

Figure 6. Time to complete each task in Study 1 for each participant. Averages include timeouts.

5.2 Results
While the LooPy baseline allowed users to add more execu-

tions of the code that would generate more live values in

the Projection Boxes, none did. When using ScooPy, users

demonstrated via both actions and verbal comments more

engagement with the code and the tool. Some users, even

though they verbally expressed a correct understanding of a

specific line of code, still added more examples for additional

clarity. P5 said, “I don’t think there’s a problem here, but

I’ll just add another example”. This heightened engagement

with examples also led users to consider new function-level

executions and add them to the ones provided with the task.

Even after the programwas fixed, participants using ScooPy

continued adding both high-level and line-specific specifi-

cations. Users preferred adding examples to existing scopes

over adding new execution values to view in the Projec-

tion Boxes. Two out of the four users who used ScooPy first

wanted to add new example scopes. For example, P4 said, “I

don’t remember if sorted returns a value. . . how can I add the

comments above the line by myself?” All users who used

ScooPy before LooPy asked for example scopes back when

solving tasks with LooPy (P1,P4,P6).

As an interesting anecdote, the Palindrome task was given

to four users in LooPy, and of those, two (P2,P3) chose to

delete and re-implement the entire function instead of in-

vesting the necessary effort to understand the code. Neither

of the two users solving this task with ScooPy did this.

The times shown in Figure 6 reflect when users indicated

they were ready to walk away from the task. Almost univer-

sally, this time was longer with ScooPy. However, this went

hand-in-hand with more apparent willingness to understand

the existing code rather than just the task. Notably, studies
such as Gajos and Mamykina [15], Vaithilingam et al. [45]

illustrate that lack of engagement with generated code often

results in incorrect code and minimal learning.

6 User Study 2: Synthesizing
Our second study is a between-subjects study to examine

how users handled the added expressivity of synthesizing

with hierarchical specifications. We aim to further support

RQ1, now considering example scopes and their attached

editing and liveness features while synthesizing and not just

reading synthesized code. Additionally, it aims to answer

our remaining research questions:

RQ2 Do programmers understand the meaning of nested

scopes as a synthesis specification?

RQ3 Does synthesis of nested specifications improve pro-

grammers’ success with their synthesis objectives?

6.1 Method

Participants. We recruited 16 participants (9F, 7M), all stu-

dents at Technion, by hanging flyers in communal study

areas in the CS department. Of these, one was a master’s

student and the rest were undergraduate students. None of

the participants had any prior practical experience with pro-

gram synthesis. For those who responded to the flyer, we

performed an initial pretest to guarantee participants had an

adequate programming level in Python: participants were

asked to find the first index in a string where a second string

appears by iterating on the string with a loop. None of the

respondents failed to perform this initial task. We denote

the participants P7 to P22. Participants were compensated

$13/hr for their time.

Settings. Our experiment required a baseline setting against

which to compare ScooPy. We could compare it with the

existing LooPy IDE, as in Section 5, i.e., completely without

example scopes. However, since our first study showed the

documentation and liveness inherent in the scopes to be

valuable to users, simply adding synthesis (with different

algorithms) to both settings would have confounded the

results.

We therefore created an intermediate setting, which we

name Scoopyflat: users had full access to the ScooPy interac-

tion, including a synthesizer that generates example scopes,

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

but with a synthesizer that can only solve “flat” specifica-

tions, representing the status-quo in symbolic synthesis. This

synthesizer can solve all tasks with sufficient top-level ex-

amples, but when invoking Scoopyflat on nested example

scopes, the synthesizer only respects the top-level examples.

This creates a setting where users can create nested scopes,

and isolates the change in the synthesizer to respect nesting

in the study.

Participants in the Scoopyflat setting were explicitly shown

the behavior of Scoopyflat on a nested specification as part

of the study’s guided introductory task.

Tasks. Our tasks set out to explore the two scenarios where

we hypothesized that nested specifications would be more

helpful than “flat” specifications: fixing unfamiliar code and

extending existing code. To this end, we have twomain study

tasks and one additional scaffolding task.

Task A. Compress: Starting with an initial state similar to the

incorrect state in Figure 1, participants were asked to fix the

synthesized code, which already includes example scopes.

Task B. Brackets (scaffolding): A scaffolding task in which

participants create the code they then extend in Task C.

This neutralizes the unfamiliarity of the code which is often

a confounder in modification tasks. In the initial task we

asked users to format a string and surround it with brackets.

The task had no initial code, only a top-level example. No

nesting was needed to solve this task, only a sequence of

assignments, so we expected to see no difference between

ScooPy and Scoopyflat.

Task C. Brackets (test): Starting from the result of task B,

participants were asked to extend their code to add a new

case where the string uses another formatting.

The initial sketch for the first task and the docstring for

the second task can be found in the supplementary material.

Methodology. To answer RQ2–3, we randomly assigned

participants to one of the two settings: ScooPy, or Scoopyflat.

Participants of both groups first watched an introductory

video about program synthesis, Projection Boxes, and exam-

ple scopes. Next, they performed a guided introductory task,

where the researcher walked them through using the editing,

liveness features and calling the synthesizer.

During this walk-through, participants were instructed to

create a two example scopes nested one within the other by

wrap an existing example scopewith a new scope that specify

a missing case. Participants were then asked to predict what

would happen if the synthesizer was re-launched on the

external scope in order to fix the internal code (in practice:

Scoopyflat would ignore the internal scopes, while ScooPy

would not). After they answered, they were instructed to call

the synthesizer, and then to explain what actually happened

and how it varies from their prediction.

Participants solved all three tasks in order using only edit-

ing of examples, adding new example scopes, and synthesis.

Task A had a timeout of 25 minutes, and tasks B and C had

timeouts of 15 minutes each.

Finally, participants were asked to fill out a survey reflect-

ing on their experience. Questions alternated positive and

negative phrasing. Participants filled out the survey in a form

that randomized question order and submitted it without

the researcher’s supervision. These are intended to mitigate

known biases that occur in participants’ responses.

6.2 Results

Understanding nested specifications. When asked during

the guided task what would happen when re-synthesizing

a nested specification, participants’ predictions were mixed.

Six of them thought the synthesizer would disregard the

inner scope, or were unsure but thought it would not take

it into account (P21). Even though they thought so, P14 in-

dicated they found this to be undesirable: “I would have

wanted it to do something with all the examples”.

The other ten participants thought the synthesizer would

use inner examples, saying, e.g., “it will use all the examples”

(P19). P19 noted that this is not only their prediction but

the correct behavior: “it should keep all the examples you

provided to it (not just use them)”. Two participants believed

that the synthesizer could, or at least should, track the history

of synthesis calls and use the data from previous synthesis.

Five participants out of the sixteen predicted the inner

example scope would be left completely intact, and the syn-

thesizer “shouldn’t touch the inner one” (P9). This was unre-

lated to whether they thought the synthesizer would take

the inner examples into account or not.

After re-synthesizing the external scope, five of the ScooPy

participants offered an explanation for what happened dur-

ing re-synthesis, and all five were correct. The other three

offered no explanation, only declarative descriptions of the

result. No participant provided an incorrect description.

Scoopyflat users described what happened as “deleting”

(P14, P17, P22), or “overriding” (P10, P13) Some reacted with

confusion (P18, P21), and reconciled it by saying the inner

scope did not count as examples (P21). P10, who had initially

predicted the inner scope would be used by the synthesizer

categorized the result as synthesis having failed.

Using nested specifications. During the Compress task,

three participants from each group wrapped code that in-

cludes another example scope with a new example scope.

However, not all of them did this to re-synthesize: some only

did it as a means to test their code. Many participants tried

to wrap the top-level of the function in an example scope,

but were instructed by the researchers not to do so because

the code includes a loop, which is outside of Scoopyflat and

ScooPy’s target language. In the post-study survey, both

Scoopyflat and ScooPy users rated wrapping examples as

fairly easy (averages 3.9 and 3.4, where 1 is “very difficult”)

and most found it not frustrating (averages both 2, where

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

1 is “not frustrating at all”). Users also found it simple and

valuable to distinguish between scopes of examples, but not

as simple and valuable as they found example scopes them-

selves.

During the two parts of the Brackets task, nine partici-

pants from both groups (P9, P12-19) created nested scopes.

They synthesized the next assignment inside the scope of

the previous one. Since they synthesized an assignment to

a new variable, this did not “break the tests”: the variable

specified by the outer example scope did not change. And

this created an unbalanced tree of example scopes with a

long chain to the right. Scoopyflat’s users did this on average

0.25 times per task and ScooPy’s users 0.5 times per task.

At some point during TaskA all participants re-synthesized

a scope that includes a nested scope. However, ScooPy’s par-

ticipants did so more often: 2.5 times on average compare

to 1.62 times for Scoopyflat’s participants (medians 1.5 and 1,

resp.).

In the Brackets (test) task, while many participants created

nesting of scopes, participants only synthesized stand-alone

or inner-most scopes. This, again, neutralized the difference

between the tools.

Synthesizing locally. None of the ScooPy participants added
unnecessary input variables to the given inner scope in the

first task. Two of them (P13, P14) also added another nested

scope and provided only the local and needed variables to

specify their intent. On the other hand, almost all Scoopyflat
participants at some point re-synthesized the outer scope,

removing the inner scope. This led to a loss of locality, as

they had to work with examples that required specifying

more input variables, rather than focusing on the relevant

localized context.

Efficiency and expressiveness of ScooPy. While solving the

Compress task, Scoopyflat participants modified their exam-

ples and re-lunched the synthesizer nearly twice as often as

ScooPy participants: 8.25 re-synthesis calls on average and

a median of 8.5, compared to 4.37 times on average and a

median of 4.5.

Adding and modifying examples. All participants modi-

fied existing example scopes, most often as a means to fix

buggy examples and re-launch the synthesizer. This is the

behavior studied artificially in Task A of our first study (Sec-

tion 5) demonstrated on the participants’ own synthesis calls.

Several (P9, P14, P17) explicitly pointed out that inspecting

the example scopes helped them figure this out.

Participants of both groups responded favorably in the

post-study survey to adding and modifying examples. In

Table 1 all but one of the participants marking adding and

modifying examples as non-frustrating or neutral activities

(all averages under 2, where 1 is “not frustrating at all”),

and all but two participants ranked the ease of adding and

modifying examples as easy or neutral (all averages over

3, where 1 is “very difficult”). Moreover, participants found

Table 1. Participant responses to the post-study survey about
features available in Scoopyflat (F) and ScooPy (S).

avg distribution

F S F S

Rate the ease of the following action in the editor

1=very difficult, 5=very easy

Adding examples 3.8 4.1

Modifying examples 4.5 3.3

Wrapping code with examples 3.9 3.4

How frustrating was performing the following action in the editor?

1=not frustrating at all, 5=very frustrating

Adding examples 1.6 1.5

Modifying examples 1.9 1.6

Wrapping code with examples 2 2

How valuable did you find the following feature?

1=not valuable at all, 5=very valuable

Coloring examples according to their

evaluation result 4.5 4.9

The tool’s ability to visually distinguish

between different scopes of examples 3.6 3.5

Keeping past synthesis examples in the

editor for future synthesis 4.6 4.5

How complicated was it to understand the following feature?

1=not complicated at all, 5=very complicated

Coloring examples according to their

evaluation result 1.6 1.5

The tool’s ability to visually distinguish

between different scopes of examples 2.4 2.1

Keeping past synthesis examples in the

editor for future synthesis 1.6 2

Did you trust synthesized code?

1=completely distrusted, 5=fully trusted

When synthesizing with ?? (from scratch) 2.3 3

When re-synthesizing a single scope

of examples 2.8 3.6

When re-synthesizing multiple nested

example scopes 3 2.4

keeping the examples in the editor for future synthesis to

be valuable (averages 4.5 and 4.6, where 1 is “not valuable at

all”) and simple to understand (averages 1.6 and 2, where 1

is “not complicated at all”).

Using live feedback. Participants from both groups consid-

ered the live feedback for example scopes valuable (averages

4.5 and 4.9, where 1 is “not valuable at all”), and simple to

understand (averages 1.6 and 1.5, where 1 is “not complicated

at all”). Only one participant marked the coloring of tests

as complicated to understand, but did not mark them as not

valuable.

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

Table 2. Participant responses to the post-study survey sum-

marizing their experience with Scoopyflat (F) and ScooPy (S).

avg distribution

F S F S

1=ineffective, 2=slightly effective, 5=very effective

How effective were the examples in

helping you understand code you did

not write? 3.3 2.8

1=very dissatisfied, 5=very satisfied

How satisfied are you with the overall

user experience of the tool? 3.3 3.6

As in our first study, some users (P10, P19) added more

examples to their code after they reached a solution in order

to check these examples would hold as well. This is a behav-

ior specifically enabled by the live feedback. P11, who used

ScooPy, also pointed to one of the input-output examples

provided in a comment for the task description and said, “I

wish it would appear up here with color”.

Specifically, conflict identification was more important

than we anticipated: participants created in 50% of ScooPy

sessions and in 38% of ScooPy sessions. The majority of these

conflicts were conflicts between examples in the same scope.

Only a handful were between examples of nesting scopes.

Participants who got a conflict warning quickly recovered

and modified or deleted one of the conflicting examples.

Times and success rates. Figure 7 shows the times until

participants completed each of the tasks. One ScooPy partici-

pant, P15, timed out performing the scaffolding Brackets task

and could not continue on to Brackets (test), indicated with

a - . One Scoopyflat participant, P7, left the experiment after

the first task, and is indicated as- for the remaining tasks.

Figure 7 also shows the average time to task completion,

including participants who timed out as the task timeout, 15

or 25 minutes.

Excluding timeouts, 5 of 8 ScooPy participants finished

the Compress task in an average of 19.5 minutes, compared

to one successful Scoopyflat participant who finished the

task in 25 minutes, seconds before the timeout. Figure 7

shows averages counting timeouts as 25 minutes, the aver-

age completion time with ScooPy was 21.5min and and for

Scoopyflat the average was 25min. The difference between

the two groups is statistically significant (unpaired t-test,

𝑝 = 0.0326).

In the scaffolding Brackets task, the two settings are near

equivalent—synthesis is always of the next step and no

nested scopes need to be synthesized to complete it. It is

expected, then, that participants in both settings performed

similarly; the difference between the groups is not statisti-

cally significant (𝑝 = 0.7603).

In the Brackets (test) task, Scoopyflat participants finished

in average of 2.3min. With a timeout counted as 15min,

ScooPy participants finished in an average of 6min. However,

this difference is not statistically significant (𝑝 = 0.1091).

User feedback. After seeing its effects in the guided task,

Scoopyflat participants were wary of any nesting they en-

countered during the study itself. P10 said, “if I touch the

outer scope it will disrupt all of the inner scope”. P14 was also

cautious, “if I [synthesize the outer scope] it would delete

everything”.

In the post-study survey, ScooPy participants expressed a

slight distrust of code synthesized from a nested specification

compared to Scoopyflat participants, as shown in Table 1. We

interpret the difference as Scoopyflat participants using this

feature less, because they understood it would delete inner

examples along with the code. In contrast, ScooPy users

knew that internal scopes would be considered but had not

yet developed enough intuition to be as confident about how.

Overall, ScooPy users were more satisfied with their ex-

perience (Table 2), on which the large gap in success rates

of Task A likely had some impact.

7 Non-User Evaluation
In this section, we show our non-user evaluations of ScooPy’s

synthesizer. We aim to answer the following research ques-

tions:

RQ4 Do nested specifications require fewer top-level ex-

amples and fewer examples in general to synthesize

correct programs?

RQ5 Does the addition of nested specifications and the

division into sub-tasks allow the synthesizer to search

its space faster than synthesizing a non-hierarchical

specification?

RQ6 Can an LLM serve as the synthesizer for nested exam-

ple specifications instead of ScooPy’s synthesis algo-

rithm?

Benchmarks. For the experiments in this section, we con-

structed two benchmark sets:

– main: a set of 50 programming tasks inspired by tasks in

the SyGuS competition [3] and from other PBE synthesiz-

ers [13, 22]. We turned each benchmark into a hierarchical

ScooPy task by synthesizing small parts of each task’s

solution and manually writing other parts, in a workflow

similar to the motivating example in Section 2. We then

added a top-level example scope with a few examples from

the original benchmark.

– flat: to compare ScooPy to a synthesizer without hierar-

chical capabilities, we converted every benchmark in the

main set to a flat benchmark: given a benchmark with

𝑘 total examples in all nesting levels, we retained only

the examples in the outer-most scope (examples from the

original task from the literature) then ran the LooPy (flat)

synthesizer on these examples. If the synthesizer returned

an overfitted program another example from the original

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

ScooPy LooPy Timeout Average

ScooPy ScooPyflat
P2

0 P8 P9 P1
9

P1
2

P1
1

P1
5

P1
6

P1
0 P7 P1

3
P1

4
P1

7
P1

8
P2

1
P2

2
0

5

10

15

20

25

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(a) Task A. Compress

ScooPy ScooPyflat
P1

2 P8 P2
0

P1
1

P1
9 P9 P1

6
P1

5
P1

0
P1

3
P1

8
P1

4
P1

7
P2

1
P2

2 P7
0

5

10

15

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(b) Task B. Brackets (scaffolding)

ScooPy ScooPyflat
P1

9 P8 P1
1

P2
0 P9 P1

2
P1

6
P1

5
P1

3
P1

4
P1

0
P2

1
P1

7
P1

8
P2

2 P7
0

5

10

15

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

in
)

(c) Task C. Brackets (test)

Figure 7. Time to complete each task in Study 2 for each participant. A participant who did not participate in the task, e.g.,

because of timing out in the scaffolding task, is denoted with a “-”. Averages include timeouts.

SyGuS task was added to the set. We continued adding

examples until a the synthesizer found the target program,

up to a limit of 𝑘 + 5 total examples, i.e., giving the flat

benchmark up to five additional examples over the total

number of nested examples.

Experimental setup. Experiments that refer to a “flat” syn-

thesizer use the LooPy synthesizer. In a flat setting (i.e., no

nesting), LooPy and ScooPy synthesizers are equivalent ex-

cept for ScooPy’s support of the retain predicate, which does

not feature in runs without nesting.

Times were recorded as an average of the synthesizer run-

time over five runs. We define a benchmark as solved if it

was solved in over half (i.e., three or more) of the runs, but in

practice no benchmark was split between solved and timeout

results.

All benchmarks were run on a laptop computer with 12th

Gen Intel(R) i7-1260P 2.10 GHz processor and 32 GB of RAM.

We ran the benchmarks on the with a timeout of 10 seconds.

7.1 RQ4: Difference in expressiveness
7.1.1 Method. To test RQ4 we constructed the flat bench-
mark for each benchmark in the main set, and attempted to

synthesize the same code with as few top-level examples as

possible and no nested examples. To compare it to ScooPy

in terms of expressiveness we ran the flat version of each

benchmark on the flat synthesizer, and examined the delta
from its main version that the ScooPy synthesizer solves:

the difference in the number of examples required for each

benchmark to be solved. For ScooPy, we count examples

as both the outer-most and any nested examples in inner

scopes, i.e., anything a user would have specified. We ran

each benchmark on both tools with a timeout of 10 seconds.

7.1.2 Results. The number of benchmarks solved at each

delta is shown in Figure 8.

−4 −3 −2 −1 0 1 2 3 4 5
Difference in number of examples (flat−main)

0

10

20

30

40

50

Be
nc

hm
ar

ks
 so

lv
ed

40

Figure 8. Number of benchmarks solved at each size of delta

between flat and main (cumulative). Benchmarks solved at

a positive difference (i.e., need more examples for flat) or
remain unsolved show ScooPy’s additional expressiveness.

In 15 of the 50 benchmarks, the flat synthesizer needed a

smaller total number of examples than ScooPy’s synthesizer.

This is because themain set was constructed tomimic human

action, rather than to minimize the number of examples used,

whereas the flat set was methodically constructed from it.

In eight additional benchmarks the number was equal, and

in 17 benchmarks, the flat synthesizer needed more examples

at the top-level than ScooPy needed at the top level and in

all nested scopes. Finally, in the 10 remaining benchmarks,

either 5 additional examples were not sufficient or a timeout

was reached, meaning the flat synthesizer could not find a

solution.

Evenwhen looking only at the number of examples, we see

that nested specifications’ ability to specify locally allows

many tasks to be solved with fewer examples. This was

originally the philosophy of Small-Step PBE [14]—which is

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

100 200 300 400 500 600 700 800
0

10

20

30

40

50

Be
nc

hm
ar

ks
 so

lv
ed

3000 4000 5000 6000 7000 8000 9000 10000

40

50

ScooPy
flat
ScooPy on benchmarks solved by flat

Time (msec)

Figure 9. Number of benchmarks solved, cumulative over

time (higher is better). ScooPy runs on benchmarks from the

main set while the flat synthesizer runs on their flat coun-
terparts. The orange line shows ScooPy only on benchmarks

that the flat synthesizer can solve, and is contained in the

full ScooPy (blue) run.

here extended to nesting. We find that often hierarchical

specifications can be more expressive.

7.2 RQ5: Accelerating the search
7.2.1 Method. To test whether nesting can accelerate the

search of the synthesizer’s space, we compared ScooPy and

the flat synthesizer: ScooPy on the main version of each

benchmark and the flat synthesizer on the corresponding

flat version. We ran each benchmark on both tools with a

timeout of 10 seconds. For each benchmark we measure the

synthesizer’s run time until solving.

7.2.2 Results. The number of benchmarks solved by each

synthesizer over time is shown in Figure 9. The graph shows

three lines: benchmarks solved by ScooPy, benchmarks solved

by the flat synthesizer, and an additional line showing the

progress of ScooPy on the 40 benchmarks that both synthe-

sizers can solve.

The flat synthesizer was able to solve 40 out of the 50

benchmarks. ScooPy solved all of these faster than the flat

synthesizer, as well as the remaining 10 benchmarks in the

set that time out in the flat synthesizer.

This shows the power of nesting to accelerate the search

by providing synthesis with simpler sub-goals and hints, and

allows us to answer RQ5 in the affirmative.

7.3 RQ6: ScooPy vs. LLMs
7.3.1 Method. To test RQ6 we compared ScooPy’s synthe-

sizer to a LLM with a PBE prompting strategy on a set of

benchmarks with hierarchical specifications.

Experimental setup. We used the OpenAI API for Python

for this experiment. We tried several models and chose gpt4-

o, as it performed the best of the available models. Our

2 4 6 8 10 12 14
Number of LLM Queries

0

10

20

30

40

50

Be
nc

hm
ar

ks
 so

lv
ed

31

(a) Cumulative solved benchmarks over prompting iterations

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

0

10

20

30

40

50

Be
nc

hm
ar

ks
 so

lv
ed

31

50

LLM synthesis algorithm
Total Benchmarks
symbolic synthesis algorithm

(b) Cumulative solved benchmarks over time.

Figure 10. Comparing ScooPy to gpt4-o (higher is better).

For gpt4-o line shows the median run out for each bench-

mark, with the surrounding range delineating best and worst

runs.

prompt used the same role and description of the task in all

benchmarks. Our test program also validated the response

by counting the number of returned examples, verifying the

format of the response and evaluating the examples on the

code itself.

Prompting strategy. To prompt the model, we used a Chain

of Thought and Refinement style of prompting [41, 48]. Each

prompt contained the delineating comment for one example

scope, and nesting was constructed bottom-up: successful

results from nesting level𝑛−1were providedwith the prompt

to nesting level 𝑛, asking the model to use the previous

level’s result in the current level. The prompt asked the

model for code and to return the example scope provided

surrounding the code, to mimic ScooPy’s creation of example

scopes. Using input-output examples as part of the prompt

was preformed in multiple fields such as agents refinement

[41] and programs repairs [40].

If code could be extracted from the response, it was veri-

fied by evaluation on the examples in the specification, and

returned to the model if the code did not run or the examples

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

did not hold. Additionally, preservation of examples in the

example scope was tested. Every time the model failed, we

provided it with the resulting error—failing to satisfy the

examples or a missing example scopes—as feedback. The

LLM then used this information in the next call to attempt

to fix the previous program. This iterative feedback loop is

widely used and was shown improve the accuracy of LLM-

generated code [7, 10, 38]. Benchmarks had a timeout of 20

seconds.

Data collected. We ran the above setup on all benchmarks in

the main set and collected the number of iterations needed,

the type of error for error iterations, and the time. Since

prompting an LLM is not deterministic, we ran each bench-

mark 5 times. We also compare these to the the runtimes of

ScooPy on the main set collected in Section 7.2.

7.3.2 Results. The results are shown in Figure 10. In all

runs, the LLM was able to solve correctly 31 out of the 50

benchmarks. While the maximum number of scopes in the

benchmark set (i.e., minimum number of queries at which

all benchmarks could be solved in the experimental setup)

was 5, the LLM required up to 15 queries to solve the tasks

it did solve. Likewise, the LLM took substantially longer to

solve the benchmarks—unsurprising given the number of

iterations with the LLM—only five tasks were solved in under

a second, whereas ScooPy solves 45 tasks in under a second.

93% of queries to the LLM returned some sort of erroneous

response. We analyzed the errors and found a variety of rea-

sons. In 74% the model did not return examples along with

the code, or changed the specification examples in the exam-

ple scope, in 13% the response did not satisfy the examples

provided, 11% of the responses contained no code at all, and

2% had other errors.

8 Discussion and Future Work
Usefulness of example scopes (RQ1). Users in both studies

were unequivocally pleased with example scopes as a tool for

testing and comprehension, both with and without access to

synthesis. The live feedback for example scopes also encour-

aged users to add more examples for new potentially-edge

cases they considered, finishing the task only after several

of those were green; this behavior was observed in both of

the studies. This meant task times were a little longer when

the method of solution was equivalent (i.e., the first study

and the Brackets task of the second study), but participants

were more certain of their solution.

Moreover, the presence of the examples surrounding a

synthesis result allowed them to reflect on a synthesis query

they made, and make fast judgements about whether the

code is overfitted. Example scopes were frequently used to

re-synthesize, and as a result, users trusted re-synthesized

code more than initially synthesized code.

We therefore answer RQ1 in the affirmative: ScooPy’s

introduction of example scopes helps users understand and

interact with synthesized code more effectively.

Understanding nested specifications (RQ2). Not all ScooPy
users correctly predicted what would happen the first time

they encountered synthesis with nested specifications in the

guided task of the second study. However, all correctly un-

derstood and explained back what had happened once it was

demonstrated to them. This base level understanding was

likely not enough to garner trust: ScooPy users did not fully

trust code synthesized with a nested specification, whereas

Scoopyflat users who understood exactly how the synthesizer

would treat nesting (i.e., ignore it) trusted the results more.

We believe this difference (average of 2.4 compared to 3 for

Scoopyflat, Table 1) would improve over continued use.

ScooPy participants rated the general principle as not

complicated to understand (Table 1), and were still more

pleased with their experience with synthesis. While we can-

not answer RQ2 with an unequivocal affirmative, we see the

results as promising, and believe that with time synthesis

with nested examples will feel like a less opaque action, even

though it is not a completely simple one.

Usefulness of synthesizing nested examples (RQ3). Our
second study found ScooPy to be very useful in a debugging

task, but not improving time or success in a codemodification

task. We do not know whether this is due to the nature of

the task or some characteristic of the task itself. However,

this does show that there are tasks where ScooPy makes a

big difference, and in others it is equivalent to Scoopyflat.

The overall satisfaction with ScooPy was higher. Users

reported less frustration and higher levels of understating of

the interaction. On average participants who used ScooPy

also added fewer examples and edited previous ones until

synthesis returned a desirable result: the additional expres-

siveness of ScooPy and its ability to provide specifications

locally lowers the burden of providing examples. This accen-

tuates the fact that though nested specifications are not the

best tool for every type of task, they do provide program-

mers with the ability to synthesize and express specifications

locally, itself a powerful tool.

To answer RQ3, then, synthesis with nested examples

sometimes improves on synthesis with flat examples.

Other ways to formnesting. Our initial hypothesis was that
the two main cases where nesting would form given example

scopes were using top-down and bottom-up construction

of the code. However, during our second study, 9 of the

16 participants in both groups managed to create nested

examples even though they essentially solved the task as

small-step PBE [14], synthesizing a sequence of assignments

one at a time, by synthesizing a new assignment at the end
of an enclosing scope. While unexpected as a behavior, this

only shows how easily example scopes saved in the code

file can wind up nested inside each other by unintentional

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

programmer actions. This further motivates the need for

a tool that accepts nested examples when the programmer

later tries to interact with them.

A separate layer of liveness. Separating ScooPy’s live feed-

back into a separate layer of liveness separate fromProjection

Boxes was confusing to some users (P13, P15, P19). Moreover,

of those some noted that the values in the Projection Boxes

were simply not useful to them (P13, P19). While the values

in the Projection Boxes were used by many participants to

synthesize single scopes, this is not a necessity: the choice

to separate ScooPy into its own liveness layer in this way

means that example scopes and synthesis with them can be

used on their own, or in synthesis tools other than LooPy.

Preserving or prioritizing existing code. There was a spe-
cific tension in how users viewed synthesis with example

scopes: on the one hand, they expected incorrect code to be

fixed by the synthesizer. On the other hand, they wanted the

synthesizer to take into account code that exists inside the

scope, e.g., not replace an existing condition if it can be used

in the solution, and generally consider user-provided code.

While previous work on this in the context of synthesis-

driven program repair [35] was only moderately successful,

and mainly led to weird results, it is worth exploring given

new results in probabilistic grammars and the different do-

main.

Provenance and nesting of LLM-generated code. Though
large language models drive many available coding assis-

tants, we chose not to compare ScooPy against these assis-

tants directly. The initial problem that ScooPy tackles—the

provenance of code—is non-trivial with an LLM to an extent

that it constitutes a disparate and interesting research direc-

tion: how can provenance be stored when it should contain

a huge prompt? And how should the non-determinism of

LLM results factor into such documentation? On the other

hand, simply comparing to developing with, e.g., Copilot,

would not tell us much about the value of solutions to either

problem.

Moreover, our results in Section 7.3 show once nesting

has formed, LLMs may not be the right tools to tackle it:

querying a model took longer, returned worse results for

PBE tasks, and required many iterations and corrections to

both generate correct code and label it for the programmer.

Limitations. The external validity of our studies is limited

by our choice of participants. While Tahaei and Vaniea [39]

found CS students to be a cost-effective population for pro-

gramming studies, we tried to further mitigate the threat

by recruiting participants with Python experience and, in

our second study, adding a programming pretest. We also

acknowledge the results of the second study are limited to

tasks that are entirely within the scope of the tested syn-

thesizers. A more open-ended study where the tool only

supports some of users’ calls to the synthesizer would have

been more ecologically valid, but would have generated less

data about ScooPy’s novel features over the course of a single

session.

9 Conclusion
We presented ScooPy, a synthesis tool that records its spec-

ifications in example scopes and leverages these scopes to

give programmers live feedback. Because nesting of example

scopes can easily occur, ScooPy also supports synthesizing

with nested example scopes without losing the information

in the inner scopes. Our user studies demonstrate that exam-

ple scopes increase users’ engagement with the code, that

ScooPy is effective in improving success with synthesis in

some tasks, and that example scopes and live feedback from

them are helpful and favored by programmers.

Acknowledgments
We would like to thank Elena L. Glassman, who was instru-

mental in every step of this project, and the participants of

our user studies. This work is funded by the European Union

(EXPLOSYN, 101117232). Views and opinions expressed are

however those of the authors only and do not necessarily re-

flect those of the European Union or the European Research

Council Executive Agency. Neither the European Union nor

the granting authority can be held responsible for them.

References
[1] [n. d.]. GitHub Copilot, your AI pair programmer. https://copilot.

github.com/.
[2] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Re-

cursive Program Synthesis. In Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha
Sharygina and Helmut Veith (Eds.). Springer, 934–950. doi:10.1007/978-
3-642-39799-8_67

[3] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.

2016. SyGuS-Comp 2016: Results and Analysis. 229 (2016), 178–202.

doi:10.4204/EPTCS.229.13
[4] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time

learning for bottom-up enumerative synthesis. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 227:1–227:29. doi:10.1145/3428295

[5] José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun

Radhakrishna, Clint Simon, and Ashish Tiwari. 2023. FlashFill++:

Scaling Programming by Example by Cutting to the Chase. Proc. ACM
Program. Lang. 7, POPL (2023), 952–981. doi:10.1145/3571226

[6] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon:

Scraping Distributed Hierarchical Web Data. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology
(Berlin, Germany) (UIST ’18). Association for Computing Machinery,

New York, NY, USA, 963–975. doi:10.1145/3242587.3242661
[7] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2024.

Teaching Large Language Models to Self-Debug. (2024). https://
openreview.net/forum?id=KuPixIqPiq

[8] Robert Corbett. 2022. GNU Bison (software). https://git.savannah.gnu.
org/cgit/bison.git

[9] Françoise Détienne. 2001. Software design cognitive aspects. Springer.
http://www.springer.com/computer/swe/book/978-1-85233-253-2

[10] Yangruibo Ding, Marcus J. Min, Gail E. Kaiser, and Baishakhi Ray.

2024. CYCLE: Learning to Self-Refine the Code Generation. Proc. ACM
Program. Lang. 8, OOPSLA1 (2024), 392–418. doi:10.1145/3649825

https://copilot.github.com/
https://copilot.github.com/
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.4204/EPTCS.229.13
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3242587.3242661
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://git.savannah.gnu.org/cgit/bison.git
https://git.savannah.gnu.org/cgit/bison.git
http://www.springer.com/computer/swe/book/978-1-85233-253-2
https://doi.org/10.1145/3649825

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

[11] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gul-

wani. 2020. Wrex: A Unified Programming-by-Example Interaction

for Synthesizing Readable Code for Data Scientists. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,

New York, NY, USA, 1–12. doi:10.1145/3313831.3376442
[12] Justin Du, Mandeep Syal, and Thanh-Nha Tran. 2022. PBUnit: A Live

Programming Environment for Unit Testing. In Programming Lan-
guage Design and Implementation (PLDI) Student Research Competition.
Poster.

[13] Kasra Ferdowsifard, Shraddha Barke, Hila Peleg, Sorin Lerner, and

Nadia Polikarpova. 2021. LooPy: Interactive Program Synthesis with

Control Structures. Proc. ACM Program. Lang. 5, OOPSLA, Article 153
(Oct. 2021), 29 pages. doi:10.1145/3485530

[14] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner,

and Nadia Polikarpova. 2020. Small-Step Live Programming by Ex-

ample. In UIST ’20: The 33rd Annual ACM Symposium on User Inter-
face Software and Technology, Virtual Event, USA, October 20-23, 2020,
Shamsi T. Iqbal, Karon E. MacLean, Fanny Chevalier, and Stefanie

Mueller (Eds.). ACM, 614–626. doi:10.1145/3379337.3415869
[15] Krzysztof Z. Gajos and Lena Mamykina. 2022. Do People Engage

Cognitively with AI? Impact of AI Assistance on Incidental Learning.

In IUI 2022: 27th International Conference on Intelligent User Interfaces,
Helsinki, Finland, March 22 - 25, 2022, Giulio Jacucci, Samuel Kaski,

Cristina Conati, Simone Stumpf, Tuukka Ruotsalo, and Krzysztof Gajos

(Eds.). ACM, 794–806. doi:10.1145/3490099.3511138
[16] Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and

Koushik Sen. 2014. CodeHint: dynamic and interactive synthesis of

code snippets. In 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, Pankaj Jalote,
Lionel C. Briand, and André van der Hoek (Eds.). ACM, 653–663. doi:10.
1145/2568225.2568250

[17] Google. 2023. Protocol Buffers (Protobuf). https://github.com/
protocolbuffers/protobuf

[18] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets

Using Input-output Examples. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). ACM, New York, NY, USA, 317–330.

doi:10.1145/1926385.1926423
[19] Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins. 2022. Exploring

the Learnability of Program Synthesizers by Novice Programmers.

In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology (Bend, OR, USA) (UIST ’22). Association for

ComputingMachinery, NewYork, NY, USA, Article 64, 15 pages. doi:10.
1145/3526113.3545659

[20] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.

Oracle-guided component-based program synthesis. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel

(Eds.). ACM, 215–224. doi:10.1145/1806799.1806833
[21] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer.

2011. Wrangler: interactive visual specification of data transformation

scripts. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Vancouver, BC, Canada) (CHI ’11). Association
for Computing Machinery, New York, NY, USA, 3363–3372. doi:10.
1145/1978942.1979444

[22] Woosuk Lee. 2021. Combining the Top-down Propagation and Bottom-

up Enumeration for Inductive Program Synthesis. Proc. ACM Program.
Lang. 5, POPL, Article 54 (jan 2021), 28 pages. doi:10.1145/3434335

[23] Sorin Lerner. 2020. Focused Live Programming with Loop Seeds. In

UIST ’20: The 33rd Annual ACM Symposium on User Interface Software
and Technology, Virtual Event, USA, October 20-23, 2020, Shamsi T. Iqbal,

Karon E. MacLean, Fanny Chevalier, and Stefanie Mueller (Eds.). ACM,

607–613. doi:10.1145/3379337.3415834
[24] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visual-

ization for Live Programming. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
’20). Association for Computing Machinery, New York, NY, USA, 1–7.

doi:10.1145/3313831.3376494
[25] Henry Lieberman. 2001. Your wish is my command: Programming by

example. Morgan Kaufmann.

[26] Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen.

2023. Extracting Inline Tests from Unit Tests. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and
Gordon Fraser (Eds.). ACM, 1458–1470. doi:10.1145/3597926.3598149

[27] Yu Liu, Pengyu Nie, Owolabi Legunsen, and Milos Gligoric. 2022.

Inline Tests. In 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022.
ACM, 57:1–57:13. doi:10.1145/3551349.3556952

[28] Justin Lubin and Sarah E. Chasins. 2021. How statically-typed func-

tional programmers write code. Proc. ACM Program. Lang. 5, OOPSLA
(2021), 1–30. doi:10.1145/3485532

[29] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program

sketching with live bidirectional evaluation. Proc. ACM Program. Lang.
4, ICFP (2020), 109:1–109:29. doi:10.1145/3408991

[30] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron,

Oleksandr Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani.

2015. User Interaction Models for Disambiguation in Programming

by Example. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15).
Association for Computing Machinery, New York, NY, USA, 291–301.

doi:10.1145/2807442.2807459
[31] Microsoft. 2024. Visual Studio Code. https://code.visualstudio.com/
[32] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri,

and Isil Dillig. 2022. Bottom-up Synthesis of Recursive Functional

Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL,
Article 21 (jan 2022), 29 pages. https://doi.org/10.1145/3498682

[33] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers.

2012. Active code completion. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer

Society, 859–869. doi:10.1109/ICSE.2012.6227133
[34] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-

directed program synthesis. (2015), 619–630. doi:10.1145/2737924.
2738007

[35] Hila Peleg, Roi Gabai, Shachar Itzhaky, and Eran Yahav. 2020. Pro-

gramming with a Read-Eval-Synth Loop. Proceedings of the ACM on
Programming Languages 4, OOPSLA (11 2020). doi:10.1145/3428227

[36] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming not

only by example. In Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark

Harman (Eds.). ACM, 1114–1124. doi:10.1145/3180155.3180189
[37] Mark Santolucito, William T. Hallahan, and Ruzica Piskac. 2019. Live

Programming By Example. In Extended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing Systems, CHI 2019, Glasgow,
Scotland, UK, May 04-09, 2019, Regan L. Mandryk, Stephen A. Brewster,

Mark Hancock, Geraldine Fitzpatrick, Anna L. Cox, Vassilis Kostakos,

and Mark Perry (Eds.). ACM. doi:10.1145/3290607.3313266
[38] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan,

and Shunyu Yao. 2023. Reflexion: language agents with verbal

reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko,

M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc., 8634–

8652. https://proceedings.neurips.cc/paper_files/paper/2023/file/
1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf

https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3485530
https://doi.org/10.1145/3379337.3415869
https://doi.org/10.1145/3490099.3511138
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/2568225.2568250
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/3526113.3545659
https://doi.org/10.1145/3526113.3545659
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/3434335
https://doi.org/10.1145/3379337.3415834
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3597926.3598149
https://doi.org/10.1145/3551349.3556952
https://doi.org/10.1145/3485532
https://doi.org/10.1145/3408991
https://doi.org/10.1145/2807442.2807459
https://code.visualstudio.com/
https://doi.org/10.1145/3498682
https://doi.org/10.1109/ICSE.2012.6227133
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3428227
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/3290607.3313266
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

[39] Mohammad Tahaei and Kami Vaniea. 2022. Recruiting Participants

With Programming Skills: A Comparison of Four Crowdsourcing Plat-

forms and a CS Student Mailing List. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA,

USA) (CHI ’22). Association for Computing Machinery, New York, NY,

USA, Article 590, 15 pages. doi:10.1145/3491102.3501957
[40] Hao Tang, Keya Hu, Jin Zhou, Sicheng Zhong, Wei-Long Zheng,

Xujie Si, and Kevin Ellis. 2024. Code Repair with LLMs gives an

Exploration-Exploitation Tradeoff. (2024). http://papers.nips.cc/
paper_files/paper/2024/hash/d5c56ec4f69c9a473089b16000d3f8cd-
Abstract-Conference.html

[41] Hao Tang, Darren Key, and Kevin Ellis. 2024. World-

Coder, a Model-Based LLM Agent: Building World Models

by Writing Code and Interacting with the Environment.

(2024). http://papers.nips.cc/paper_files/paper/2024/hash/
820c61a0cd419163ccbd2c33b268816e-Abstract-Conference.html

[42] Steven L. Tanimoto. 2013. A perspective on the evolution of live

programming. In Proceedings of the 1st International Workshop on Live
Programming, LIVE 2013, San Francisco, California, USA, May 19, 2013,
Brian Burg, Adrian Kuhn, and Chris Parnin (Eds.). IEEE Computer

Society, 31–34. doi:10.1109/LIVE.2013.6617346
[43] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela

Mador-Haim, Milo M. K. Martin, and Rajeev Alur. 2013. TRAN-

SIT: specifying protocols with concolic snippets. (2013), 287–296.

doi:10.1145/2491956.2462174
[44] Priyan Vaithilingam and Philip J. Guo. 2019. Bespoke: Interactively Syn-

thesizing Custom GUIs from Command-Line Applications By Demon-

stration. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 563–576.

doi:10.1145/3332165.3347944
[45] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Ex-

pectation vs. Experience: Evaluating the Usability of Code Generation

Tools Powered by Large Language Models. In Extended Abstracts of
the 2022 CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI EA ’22). Association for Computing Machinery,

New York, NY, USA, Article 332, 7 pages. doi:10.1145/3491101.3519665
[46] ChenglongWang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive

Query Synthesis from Input-Output Examples. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago,
Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,

New York, NY, USA, 1631–1634. doi:10.1145/3035918.3058738

[47] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Che-

ung, and Amy J Ko. 2021. Falx: Synthesis-Powered Visualization

Authoring. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’21). Association for

Computing Machinery, New York, NY, USA, Article 106, 15 pages.

doi:10.1145/3411764.3445249
[48] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian

Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-

of-Thought Prompting Elicits Reasoning in Large Language Mod-

els. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi

Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and

A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[49] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, Robert C. Miller,

Sumit Gulwani, Butler Lampson, and Adam Kalai. 2013. A colorful

approach to text processing by example. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software and Technology
(St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for

Computing Machinery, New York, NY, USA, 495–504. doi:10.1145/
2501988.2502040

[50] Yongwei Yuan, Arjun Radhakrishna, and Roopsha Samanta. 2023.

Trace-Guided Inductive Synthesis of Recursive Functional Programs.

Proc. ACM Program. Lang. 7, PLDI, Article 141 (jun 2023), 24 pages.

doi:10.1145/3591255
[51] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu

Wang, and Elena L. Glassman. 2021. Interpretable Program Syn-

thesis. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’21). Association for

Computing Machinery, New York, NY, USA, Article 105, 16 pages.

doi:10.1145/3411764.3445646
[52] Tianyi Zhang, London Lowmanstone, XinyuWang, and Elena L. Glass-

man. 2020. Interactive Program Synthesis by Augmented Examples.

In Proceedings of the 33rd Annual ACM Symposium on User Inter-
face Software and Technology (Virtual Event, USA) (UIST ’20). As-
sociation for Computing Machinery, New York, NY, USA, 627–648.

doi:10.1145/3379337.3415900
[53] Xiangyu Zhou, Rastislav Bodík, Alvin Cheung, and Chenglong Wang.

2022. Synthesizing analytical SQL queries from computation demon-

stration. In PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 168–182.

doi:10.1145/3519939.3523712

https://doi.org/10.1145/3491102.3501957
http://papers.nips.cc/paper_files/paper/2024/hash/d5c56ec4f69c9a473089b16000d3f8cd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/d5c56ec4f69c9a473089b16000d3f8cd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/d5c56ec4f69c9a473089b16000d3f8cd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/820c61a0cd419163ccbd2c33b268816e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/820c61a0cd419163ccbd2c33b268816e-Abstract-Conference.html
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/3332165.3347944
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3411764.3445249
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/2501988.2502040
https://doi.org/10.1145/2501988.2502040
https://doi.org/10.1145/3591255
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1145/3519939.3523712

ScooPy: Enhancing Program Synthesis with Nested Example Specifications Onward! ’25, October 12–18, 2025, Singapore, Singapore

A The ScooPy Synthesis Algorithm
While Section 4.2 gives a high-level description of the ScooPy

synthesizer’s algorithm, in this section we describe it more

formally. We provide two equivalent descriptions of the al-

gorithm, one using inference rules and one in pseudocode.

ScooPy in inference rules. ScooPy is syntax-guided. Its gram-

mar, defined in in Figure 11, expands Python’s syntax to in-

clude example scopes that can wrap constructs in the target

language of the synthesizer. The scopeable nonterminal also

describes the target language of the ScooPy synthesizer, as

every synthesis result will be a scope.
ScooPy’s algorithm, then applies a set of inference rules

bottom-up until the top-level scope where the programmer

called the synthesizer. Figure 12 shows the inference rules,

whose operations are described in Section 4.2: each rule is

applied to a production with child nodes that have already

computed a triple of information ⟨ ˆE,𝑇 ,R⟩, where ˆE are ex-

amples that remain to be synthesized, 𝑇 are example pairs

synthesis must consider together when branching, and R is

code to retain, and computes such a triple for the current

node. The first four rules, scope, assign, cond, and seq han-

dle tree nodes with scopeable children, whereas the last two,
to-scopeable and to-scopeable2 turn an example scope

into a scopeable to allow it to compose with statements.

The seq and to-scopeable rules employ synthesize, a
call to the base flat synthesizer to generate one snippet satis-

fying a triple ⟨ ˆE,𝑇 ,R⟩.
Creating scopeables. There is a choice between two ways

to turn a scope into a scopeable: if the scope is directly under

a conditional, to-scopeable2, which is essentially a nop,
is used so that the cond rule can make use of the scope’s

examples. Otherwise, to-scopeable is applied, calling the

flat synthesizer.

The top-most example scope will be reached which would

call the scope rule, yielding a triple ⟨ ˆE,𝑇 ,R⟩ representing
the final step to be taken. synthesize(⟨ ˆE,𝑇 ,R⟩) is then
called a final time, and the result is returned.

ScooPy in pseudocode. An equivalent description of ScooPy’s
algorithm is shown in pseudocode in Algorithm 1: a recursive

traversal of the AST that uses the same triple of information

from child nodes—examples, pairs of examples to consider

together, and code to retain—until the top-level is reached.

The algorithmic formulation shows more clearly that a se-

quence of statements that interleaves example scopes is the

only non-top-level case where the flat synthesizer is called.

Received 2025-04-22; accepted 2025-08-11

𝑠𝑐𝑜𝑝𝑒:= E(𝑠𝑐𝑜𝑝𝑒𝑎𝑏𝑙𝑒)
𝑠𝑐𝑜𝑝𝑒𝑎𝑏𝑙𝑒:= 𝑎𝑠𝑠𝑔𝑛 #assign rule

| if 𝑐𝑜𝑛𝑑: 𝑠𝑐𝑜𝑝𝑒𝑎𝑏𝑙𝑒 else: 𝑠𝑐𝑜𝑝𝑒𝑎𝑏𝑙𝑒 #cond rule
| 𝑠𝑐𝑜𝑝𝑒𝑎𝑏𝑙𝑒; · · · ;𝑠𝑐𝑜𝑝𝑒𝑎𝑏𝑙𝑒 #seq rule
| 𝑠𝑐𝑜𝑝𝑒 #to-scopeable rule

𝑠𝑡𝑚𝑡 := 𝑠𝑐𝑜𝑝𝑒

| · · · #All Python statements

Figure 11. The Python language grammar extended with

example scopes. E(. . .) describes code wrapped in an exam-

ple scope with example set E. The three statements in the

scopeable nonterminal are the target language of the original

LooPy synthesizer.

𝑠 : ⟨ ˆE,𝑇 ,R⟩ E = {𝑖 → 𝑜}
ˆE′ = E ∪ ˆE

E(𝑠) : ⟨ ˆE′,𝑇 ,R⟩
scope

x = e : ⟨∅, ∅, ∅⟩
assign

𝑠1 : ⟨ ˆE1,𝑇1,R1⟩ 𝑠2 : ⟨ ˆE2,𝑇2,R2⟩
ˆE = ˆE1 ∪ ˆE2 R = R1 ∪ R2

𝑇 = ˆE1 × ˆE1 ∪ ˆE2 × ˆE2
if cond: 𝑠1 else: 𝑠2 : ⟨ ˆE,𝑇 ,R⟩

cond

𝑠1 : ⟨ ˆE1,𝑇1,R1⟩ · · · 𝑠𝑛 : ⟨ ˆE𝑛,𝑇𝑛,R𝑛⟩
R =

⋃{
synthesize(⟨ ˆE𝑖 ,𝑇𝑖 ,R𝑖⟩) | E𝑖 ≠ ∅

}
𝑖

𝑠1; · · · ; 𝑠𝑛 : ⟨∅, ∅,R⟩
seq

E(𝑠) : ⟨ ˆE,𝑇 ,R⟩
R′ = synthesize(⟨ ˆE,𝑇 ,R⟩)

E(𝑠) : ⟨∅, ∅,R′⟩
to-scopeable

E(𝑠) : ⟨ ˆE,𝑇 ,R⟩
E(𝑠) : ⟨ ˆE,𝑇 ,R⟩

to-scopeable2

Figure 12. Inference rules employed in ScooPy’s syntax-

guided approach. The result of processing eachAST nodewill

be a triple ⟨ ˆE,𝑇 ,R⟩ where E are examples being scooped up,

𝑇 are pairs of examples that need to be considered together

when branching, and R is code from previous synthesis calls

to be retained.

Onward! ’25, October 12–18, 2025, Singapore, Singapore Tomer Katz and Hila Peleg

Algorithm 1: The syntax-guided synthesis algorithm for ScooPy, using a flat synthesizer synthesize.

function Scoop(node: ASTNode): // Syntax-guided extraction of specifications
node match :

case E(scopeable): // Scope node

⟨ ˆE,𝑇 , R⟩ ← Scoop(scopeable)
return ⟨ ˆE ∪ E,𝑇 , R⟩ // add example scope’s examples to any specification inside

end
case assgn: // Assign node

return ⟨∅, ∅, ∅⟩
end
case if cond: scopeable1 else: scopeable2: // Cond node

⟨ ˆE1,𝑇1, R1 ⟩ ← Scoop(scopeable1) // Scoop then specification

⟨ ˆE2,𝑇2, R2 ⟩ ← Scoop(scopeable2) // Scoop else specification

// Gather examples and code to retain from both sides
ˆE ← ˆE1 ∪ ˆE2
R ← R1 ∪ R2
// Require examples from each branch be together in the result

𝑇 ← ˆE1 × ˆE1 ∪ ˆE2 × ˆE2
return ⟨∅, ∅, ∅⟩

end
case scopeable1 ; . . . ; scopeable𝑛 : // Sequence node
R ← ∅
foreach scopable𝑖 :
⟨ ˆE𝑖 ,𝑇𝑖 , R𝑖 ⟩ ← Scoop(scopeable𝑖)
if ˆE𝑖 ≠ ∅ :

res←synthesize(⟨ ˆE𝑖 ,𝑇𝑖 , R𝑖 ⟩) // Call flat synthesizer on current child

R ← R ∪ res // retain resulting code

end
end
return ⟨∅, ∅, R⟩ // All examples were synthesized for children, only retained code is passed up

end
end

end
function synthesizeTopLevel(topLevel: Example scope): // Synthesize selected example scope

⟨ ˆE,𝑇 , R⟩ ← Scoop(topLevel) // Scoop handles everything but the top level scope

return synthesize(⟨ ˆE,𝑇 , R⟩)
end

	Abstract
	1 Introduction
	2 ScooPy by Example
	3 Background and Related Work
	3.1 Synthesis from Examples
	3.2 Supporting Users of PBE
	3.3 The LooPy Synthesizer

	4 The ScooPy System
	4.1 Editing and Liveness of Example Scopes
	4.2 The ScooPy Synthesizer

	5 User Study 1: Example Scopes
	5.1 Method
	5.2 Results

	6 User Study 2: Synthesizing
	6.1 Method
	6.2 Results

	7 Non-User Evaluation
	7.1 RQ4: Difference in expressiveness
	7.2 RQ5: Accelerating the search
	7.3 RQ6: ScooPy vs. LLMs

	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References
	A The ScooPy Synthesis Algorithm

