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Abstract
Program synthesis is the problem of generating a program the user is looking for for them. Since the expressed
user intent is often (very) partial, synthesis algorithms must search a space of candidate programs for one
that exhibits the desired behavior. A lion’s share of the work on program synthesis focuses on new ways to
perform the search, but this does not tell the whole story of how a synthesizer operates. This focus disregards
the user now, and moreover, makes turning the resulting synthesis algorithm into a usable tool even harder.

The complex relationship between user intent, specifications, and interaction model means program synthesis
research must consider all three as early as possible in the development process. Interaction not only dic-
tates the choice of synthesis algorithm but how it must be modified, and algorithmic limitations need to be
accommodated in the interaction.

We demonstrate the process of concurrently building both the synthesizer and its intended user-facing tool
as a way to search for a balance of the needs of the interaction model (and, implicitly, the user) and the
algorithm, a process we name Synthesis Co-Design. We include in this paper three case studies of interactive
synthesis developed with and without co-design, and discuss the lessons learned from those projects.

1 Introduction
Program Synthesis is the problem of finding a program that satisfies a user’s provided intent. In-
teractive Program Synthesis is the formulation of the problem that includes the user’s interaction in
creating a specification of that intent, processing the result returned from the synthesizer, and refining
the specifications if need be. While the first modern program synthesizers were all incorporated in
tools [1]–[3], the purely-algorithmic formulation of the problem that is unconcerned with the origins
of its specifications has taken the center stage for almost a decade. Recently synthesis research has
again returned to tools, becoming more concerned with usability in general and with the interaction
model surrounding the tool.

The application domain for which a synthesizer is intended affects not only its choice of target
language, but also the mode of interaction. For example, FlashFill [1], the earliest successful
synthesizer, mimics the interaction of dragging-to-fill in Excel, but instead of inferring a simple range
of numbers or progression of dates, or changing the relative references in a duplicated formula, it
fills the cells using a computation synthesized using the provided values as examples. Likewise,
Rousillon [4] is a synthesizer for web scraping programs with an interaction structured to guide
the user into creating specifications describing nested loops to the synthesis algorithm.

Synthesizers for general programming, too, have interaction models, many inspired by developer
workflows. Prospector [5] and InSynth [6] are code-completion tools, launching synthesis from
type information when the programmer asks for a completion. In CodeHint [3] synthesis is launched
from within a programmer’s debug session, and additional filters are applied in a “watch expressions”
window. In RESL [7] synthesis is part of the REPL’s loop. In SnipPy [8] and LooPy [9] inputs
that are displayed in the Live Programming environment can be given outputs to form input-output
example specifications.

Finding a synthesizer that a proposed interaction model can use can be a challenge: the interaction
model dictates the available data in order to form the synthesizer’s specification (and, at times, to
decide whether synthesis should be launched) and at times adds constraints that should be placed on
synthesis results. The available information may not precisely match the information that the inter-
action model can collect. There might be crucial parts of the specification that the ideal interaction
model cannot provide, meaning that the synthesizer cannot be called. The interaction model may
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also have more information than the synthesizer accepts, but attempting to constrain results after the
fact to match that additional information may cause a search to fail.

Starting from the opposite end is often no better: many synthesis algorithms require specifications
that are hard to provide. Constructing large tabular data examples, providing hand-crafted grammars
along with the task, or answering an unbounded number of disambiguation questions are all hard
enough to construct an interaction around that many projects do not try.

The choice between a synthesizer that cannot run or fails to find programs it should find and a
synthesizer that takes hard work to specify is not a particularly useful one. Neither option will make
for a usable tool. Our aim, then, is to ensure that we can arrive at the finish line of a project with both
a working, correct synthesizer, and a usable interaction. This paper proposes the synthesis co-design
methodology to this end: an iterative design loop for ensuring the two components converge toward
each other.
Specification and search. The design space of a program synthesizer has two main aspects that
need to be decided upon: what form of specification will the synthesizer be provided and what search
algorithm will be used to find a satisfying program. The synthesizer uses these to search the space
of programs that the synthesizer can construct (aka, the search space, the language of the grammar)
and return a program if one is found.

While in theory a synthesizer can be generated by selecting any form of specification and any
form of search—or, in other words, any element from the cartesian product of the two—this does not
happen in practice. Why? Because the real design space of synthesizers is a reduced product [10]:
not every element not every element in the full product describes something that is possible in reality.1
Since the search space of the synthesizer is astronomical, it must be reduced at least to some degree,
to ensure the search can find programs. This is usually done in a way that relies on the type of
specifications, making specifications and search tightly coupled.

For example, the search can be enumerative, constructing many programs in the space until one is
found. The specifications can then be used to prune the search space on-the-fly by discarding search
directions that are nonviable [11], or programs that are equivalent to others seen before [12], [13].
Another approach is to use the specifications construct a representation of the space of programs [1],
[14] and search that representation for a solution. While an enumerative search, for instance, can be
used with any specification, as the exhaustive search will (in theory) eventually cover every program
in the space testing each against the specification, this is not a feasible approach. Other techniques
simply cannot be instantiated without guidance from a specification.

The tight coupling that leads to this reduced product is well-known in the theoretical side of
synthesis research, and helps us explain why, for instance, if a new form of specification is added by
the interaction, the synthesizer can now fail to return a correct result: pruning of search directions or
constructing a representation of the space based only on some of the specifications may discard the
program that will satisfy the new specification. Once new specifications are introduced or the type
of specifications has changed, the new point in the design space of synthesizers may not be feasible,
and algorithm development will require changing the search in order to find a feasible point.
Interaction and search. Just as synthesis algorithms are a design space, so are interaction; Jayagopal
et al. [15] present a description of the design space of synthesis interaction models. Together, we can
describe an interactive synthesis tool: the joint design space (or product) of an interaction model and
a synthesis algorithm. It is probably not a surprising claim that this space, too, is a reduced product:
combinations where the interaction model simply cannot provide the synthesis algorithm’s required
form of specification are easy to think up.

What is perhaps not as intuitive, and is the main claim of this paper, is that it is not possible to
select a point in the design space from the outset, using known options for interaction and synthesizer,
and build it. Just as specification and search are tightly coupled in making a synthesis algorithm, an

1 This usage of the term comes from Abstract Interpretation where a product of two abstractions is itself an abstraction,
but not every element in the product abstraction is feasible. For example, if abstraction A abstracts a number as odd
or even, abstraction B abstracts it as negative, zero, or positive, and we wish to abstract a number using both, then
even though (odd; zero) 2 A� B, it describes no numbers and we will remove it from the reduced product.
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interactive synthesizer is a tight coupling of specification, search, and interaction. This means that,
when starting work on a new interactive synthesizer, in all likelihood the point in the design space
that describes it does not yet exist.

Honing in on a point in the space can often lead to a mode of work where one of its elements, e.g.,
the synthesizer, is developed first, leaving the other until later. This means any mismatch between the
two has the chance to widen uncontrollably. Working on only the synthesizer puts off the discussion
of how its specifications are created, how it is launched, and how its results are consumed. Working
only on the interaction ignores changes to the synthesizer that will be needed to accommodate newly
information from the interaction, or weaknesses of the synthesizer that the interaction will need to
compensate for.

Put another way, though it is customary to think of this point of contact between the interaction
and the synthesizer as an interface, with the specification and program passed through it, this is a
problematic picture of the situation. One of the purposes of an interface is that it can be agreed
upon in advance, then both sides of it can be developed separately, with the other side abstracted
away conveniently.2 But in this case, neither interaction model nor synthesizer can abstract away the
other. The entire system is extremely fluid as long as it is in development, and attempting to agree
on an interface in advance will ultimately fail.
Synthesis Co-Design. The solution to this conundrum is therefore deceptively simple: interaction
design for synthesis must be performed while keeping an eye on the theoretical limitations of the
synthesizer, and developing a synthesizer must be done while always considering usability. To make
use of new available information in the interaction that is not yet part of an existing synthesizer’s
specifications, or to collect a new kind of specifications needed by a new algorithm, both the interaction
model and the synthesis algorithm must be modified—and modified in tandem—to avoid the problem
of their capabilities diverging.

Co-design, in essence, is about treating the interactive synthesizer as a point in a single design
space, rather than two related points in two spaces. It is also the iterative design process of discovering
that point. Co-design begins, by necessity, with an infeasible point in the space: an interaction idea
and a plan to synthesize the specifications collected by the interaction. Continuously working on
them in their unified context, even as one or the other is being modified, and constantly striving for a
working synthesizer that can be evaluated as a prototype, is the way to ensure the point in the unified
space is always a feasible point or at least close to one.
The benefits of co-design. While it may seem like iterating between synthesizer and interaction
would be harder work than focusing on one at a time, doing so is not without its benefits. Its most
obvious benefit is less work being wasted: a seemingly ready user interface does not need to be
modified to start accommodating the synthesizer, and a working synthesizer does not need to be
re-developed to adjust for a specification that cannot be collected. But less obvious is the fact that
each change in one side can then open up new avenues for the other: changes to the interaction model
may make additional specifications available for the search to handle, and theoretical changes to the
search can provide more options for the user that can be added to the interaction. This ping-pong
between changes made to the interaction and to the synthesizer improves both while keeping work
from being wasted.
Related design philosophies. The idea of the co-design of the theoretical component and the user-
facing one is not new in the PL/HCI sphere: PLIERS [17], a methodology for developing programming
languages, includes several phases of iterative design with prototype iteration. Each of these phases
involves a theoretical component in the internal iteration that also affect the language design and
be affected by prototype changes. Witte et al. [18] outline the importance of maintaining a close
contact between a user-facing component and the technical components in long-term projects where
incorporating evolving technologies becomes a design consideration.

Others prescribe the relationship between the user interaction and the backend component [19],
but an attempt to define an interface between the two components falls into the trap mentioned

2 Though imperfectly, if one believes the Law of Leaky Abstractions [16].
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Figure 1. Program synthesis with SnipPy: (a) the user observes values of variables in the Live Programming
environment; (b) providing output values creates input-output examples to be passed along to synthesis.
Figure originally from [8].

above, generalizing—possibly overgeneralizing—from a single tool.
The structure of this paper. This paper presents the philosophy of Synthesis Co-Design, and offers
three case studies from the author’s own work:
(1) a seemingly perfect marriage between existing interaction and search that still required changes

to both,
(2) a failed attempt to match a synthesizer to an interaction model, followed by the delayed imple-

mentation of co-design, an d
(3) the expansion of (1), our project most completely adhering to co-design from the start.
Finally, a discussion of the case studies concludes.

2 SnipPy: No such thing as no changes needed
The SnipPy project [8] was a marriage of two paradigms that are seemingly perfect for each other
from the start: the Live Programming project Projection Boxes shows variable values at every
possible run of the program (Figure 1(a)), and Programming by Example (PBE), a program synthesis
paradigm implemented with many different searches, takes input-output examples as its specification.
The values in Projection Boxes can be transformed into inputs with user-provided outputs, then
sent to a synthesizer to generate an expression satisfying all examples. The initial interaction is very
simple: the programmer already sees values for variables from the live programming environment, they
can create a new variable, assign output values to some or all of the existing input values (Figure 1(b)),
and get a synthesized result for the assignment. Any PBE synthesis algorithm would suffice.

However, even in such a “perfect fit”, all was not immediately well. Two problems became apparent
once the two components were connected: (1) missing constants and (2) missing examples. Of these,
(1) exposes a disconnect between the interaction and synthesizer that was unexpected, and required
modifying the synthesizer, and (2) exposed a weakness of the synthesizer that needed the interaction
model to compensate for it.
Modifying the synthesizer. The synthesizer we chose for the task was a bottom-up enumerative
synthesizer with observational equivalence [12], [13]. It was initially geared toward sygus competition
tasks, which meant it accepts a list of constants per-task. While numeric constants can be constructed
in the course of enumeration from simpler constants (e.g., 3 is 1+1+1), the same does not hold for
string constants. If the solution requires a string literal such as ";" it cannot be derived from some
basic set of literals. While top-down synthesizers often solve this problem by using a symbolic string
literal, then using an SMT solver to solve for the literal, this approach eschews the main benefit of
bottom-up enumeration: the ability to synthesize code using components that cannot be encoded for
SMT, so long as they can be evaluated.
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The synthesizer therefore had to be modified to add constant discovery as the first step of the
search, inspired by the way Version Space Algebra algorithms handle this problem: if the output
includes characters not from the input, they are added to the search’s component library. The search
can then compose them into any larger needed string literals, the way it uses number literals.
Modifying the interaction. The Live Programming environment displays many different variable
values for each line of code. A line can be executed from multiple tests, in a function called multiple
times within one test, or simply inside a loop. However, the user may not want to specify outputs for
all values. Instead, the interaction model collects as a specification for synthesis only entries for which
the programmer provides an output value. Only changed values are passed on to the synthesizer.

It quickly became apparent that this misses out on some important examples: in some cases, the
correct output of the example remains unchanged. In the initial interaction, this example was simply
not collected, which meant this correct behavior was not reinforced. Because a synthesizer tends to
overfit to few examples, this often led to undesirable synthesis results. An addition to the interaction
was needed: the programmer could change the output for an input row, or toggle an existing value
into becoming an example output.
Added benefits. Even such small changes bring with them added benefits that were not considered
originally by the interaction model. Allowing the user to toggle a line to keep its value, for example,
brought with it a more natural way to cancel a single example rather than restarting the specification
collection: rows could be untoggled as easily as they were toggled.

But even more broadly, the interaction of working in assignments to single variables proved to
support a mode of incremental, small-step thinking about the task, on the interaction side, which
led to a synthesizer benefit as well: smaller task slices provided by the user meant smaller goals
synthesized in less time, creating a more responsive interactive loop.

3 GIM and RESL: Better late than never
3.1 GIM: Doing it all wrong

The Granular Interaction Model [20] was an interaction idea we had in 2016. Synthesis results have, at
times, visibly correct and visibly incorrect parts to the solution. Especially in a linear sequence of func-
tion calls, some calls or sub-sequences can be outright ruled out and removed from the current space,
and other correct parts of the solution might be needed but currently in the wrong place. It would
be helpful if, for example, for the program input.drop(1).take(2).map(x => x.toString()) the pro-
grammer could, along with examples, indicate to the synthesizer to exclude candidate programs with
the sequence drop(1).take(2), and to include the higher-order function map(x => x.toString()).

While the interaction idea was well-liked by developers, and we showed it to also be faster than
working purely with examples using a mock synthesizer, we struggled to incorporate a working syn-
thesizer (eventually implemented in [7]).

We initially tried to pair it with a bottom-up enumerating synthesizer that searches for longer
and longer sequences: input, input.drop(1), etc. that search for our desired sequence of operations
by length. While operations that constrain the result syntactically trivially prune the search space,
and while the originally envisioned interaction was incremental, always pruning a larger portion of the
space, this was still insufficient to achieve an even remotely efficient enumeration.

On the other hand, when we started work on an implementation of GIM in a new synthesis tool,
RESL [7], the problem was different: if the enumeration is already pruned based on the examples,
this can cause the search to be incomplete, i.e., miss a program that exists in its search space.
Example. A bottom-up enumerating synthesizer constructs programs from smaller sub-programs that
were already enumerated, but when pruning the search using Observational Equivalence [12], [13] uses
the evaluation results on examples to divide the space into equivalence classes and, on-the-fly, only
keeps one representative from each class and discards the rest.

Assume that the new specification asks to find a program that satisfies the examples

[3,6,9] ! 6 [3,3,3] ! 3
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(a) The RESL Arena, including intermediate type
restrictions on the right

.

(b) Creating a sketch in RESL

Figure 2. RESL’s user interface. Figures originally from [7].

but also to include the expression input.length / 2. Assume also that the enumeration has encoun-
tered the subprogram input[0], which evaluates to 3 on both arrays. When we see the subprogram
input.length, it too evaluates to 3 on both arrays, and we have already seen a representative of its
equivalence class, input[0], so input.length will be discarded from the enumeration.

With only example specifications this is fine, a program satisfying all examples will still be found.
However, if the specification also requires the program to include input.length / 2, this is a problem,
since we discarded a crucial piece of the puzzle, input.length, and will no longer be able to construct
input.length / 2 in our enumeration, so no program satisfying the full specification can be found.

Our synthesizer had to change to accomodate the new specifications.

3.2 Challenge 1: adding new specifications to an existing synthesizer
Once the problem is laid out explicitly, the solution is clear: the new specifications must also be
represented in the pruning of the search space. To this end, we generalized Observational Equivalence:
the new synthesizer represents each of the specification forms as a family of predicates on program p:
• Input-output examples: �! !(p) , JpK(�) = !

• Retaining a sub-expression p0: retainp0(p) , p0 is a subtree of p
• Excluding a sub-expression p0: excludep0(p) , p0 is not a subtree of p
Given the more general domain we selected for RESL, we decided to drop the third syntactic predicate
from GIM, affix. For each predicate family, we defined a function called an observer that returns the
value Observational Equivalence will use for given a program. The observer for examples remains the
same: ��!!(p) = JpK(�), computing the value evaluated on the input. For exclude and retain of a
sub-program p0, the AST nodes of p0 are numbered from 1 to n, and if p is equal to subtree i then
�(p) = i . In any other case, �(p) = 0.
New possibilities. In order to ensure our new division into equivalence classes will not lead to pro-
grams being lost, we set out to prove corretness. This meant reformulating the correctness lemma for
Observational Equivalence from [12]. The new, generalized proof showed Observational Equivalence
would work with any predicate family, as long as its observer satisfies two properties.

Armed with this information, we could now extend our synthesizer with any new specification that
can be observed in a way that preserves these properties. In the paper we hypothesized several such
predicates, and chose to add two of them to our interaction model: requiring and prohibiting the use
of a type of an intermediate value in the computation, i.e., “the computation should not use strings”
or “the computation must use arrays”. These are shown in Figure 2a.

In this challenge, a problem the interaction model posed for the synthesizer was resolved, opening
up new possibilities for the synthesizer. In the next subsection, we will show the opposite direction,
the synthesizer introducing a challenge the interaction must compensate for, but the chosen mode of
compensation also requiring a change in the synthesizer.

3.3 Challenge 2: Synthesizing loops
The domain we selected for our new tool RESL was JavaScript programs, where the string and list
manipulation supports higher-order functions. These functions, map, filter, sort, and reduce are
all an abstraction of loops iterating on their list parameter. GIM’s initial support of such constructs
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included the calls to the higher-order functions as macros, but as RESL was to be a more realistic
synthesizer we wanted to synthesize the higher-order function’s function parameter.

Synthesizing loops is hard. There are many workarounds, from synthesizing unrolled loops [21] to
asking the user for additional examples [12] to incomplete stochastic methods [22] to, at the worst
case, collapsing to a full enumeration [11]. We chose a different approach. We decided to support only
higher-order functions with independent interations: map, filter, and sort. In such case, exapmle
propagation [23] is sometimes available as a mode to generate an inner specification to the function
parameter, which can then be synthesized separately.

Our idea for a bottom-up synthesizer was similar, though only the inputs are propagated: because
of the bottom-up construction, we are not aiming for programs that result in a specific output, but
that can be used in building blocks in larger programs. This means that in certain cases where
top-down example propagation would lose the information about the output, our synthesizer would
work just fine. Unfortunately, this led to a slow synthesizer: it would try all three HOFs for each
list value already enumerated, and each of those would yield numerous programs to be added to the
space.3 This weakness was compensated for in the interaction instead, by introducing sketching to
the synthesizer and thereby delegating some of the work to the programmer.
Changing the interaction. We had, by this point, decided that the best programmer workflow in
which to implement GIM is a REPL (read-eval-print loop), where the iterative nature of editing an
existing snippet and re-running it would be suitable for alternating editing and repair-by-synthesis of
one-liners (as in Figure 2b). It was possible, then, to decide that the programmer would inroduce
a loop themselves, by entering input.map(x => x) (i.e., a map that does nothing), then designating
the function parameter to be synthesized: input.map(x => ?), and sending it to the synthesizer.

This required adding sketching to the synthesizer: adding a sketch to the specification, as well as
executing the program up to the hole of the sketch in order to generate the inputs on which synthesis
will actually run, but on the other hand rather than propagating outputs as well, a process that can
lose information anyways, always testing the synthesized completions within the sketch.
Tying up loose ends. Once sketching was added to the interaction model, it could be used outside
of loops as well: the user could ask the synthesizer to fix any subexpression, creating a sketch with a
hole anywhere. Along with the user’s ability to write code themselves, including using functions that
are ourside the synthesizer’s initial vocabulary.

It was quite jarring for users to try to fix an almost-working expression that uses, e.g., a call to
the function flat() to flatten a matrix into a list, only to get back a program that replicates its
functionality with other functions. In other words, functions used in the completion of the sketch
contain intent that was being thrown away.

Fixing this involved another change to the synthesizer: because it enumerates bottom-up, and so
evaluates every AST it constructs, it can also evaluate operations it does not know using a language
engine. This allowed us to add a phase of vocabulary enrichment: at the same time that the variable
names that are available in the context are added to the vocabulary, so are any operations or functions
from the sketch’s old completion. If the user only introduced a loop using map(x => x), x is already
being added so nothing changes, but in our example, the synthesizer’s vocabulary will be updated
with flat() which the synthesizer will try to use when synthesizing a new completion to the sketch.

4 LooPy: Co-design from the start
One of the major limitations of SnipPy (Section 2) was its handling of loops. Specifically, SnipPy
could synthesize programs that perform Python list comprehensions, loops whose iterations are en-
tirely independent, and could be called inside a loop, but could not use the assigned variable in the
synthesized expression excluding loops with data dependencies.

Computing an assignment to a variable that also uses that variable using a PBE synthesizer requires
the examples to contain the value of the variable before each new assignment, something that cannot

3 The idea was sound, the poor performance was due to shoddy engineering work on this author’s part, and synthesis of
list comprehensions using this method was implemented in [8] thanks to the superior coding skills of Kasra Ferdowsi.
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be refined from end-to-end examples [7] unless those examples essentially encode the intermediate
steps, e.g., [11]’s handling of fold and [12]’s handling of recursion.

In developing LooPy [9] we saw an opportunity to use SnipPy’s interaction model to guide the
user in entering consecutive loop iterations that will naturally provide the synthesizer with the needed
intermediate steps. We also entered the project armed with a more concrete philosophy of co-design.
Changing the interaction model. SnipPy’s interaction model and specifically mode of providing
specifications line by line given values of the variables seemed to be a good starting point for getting
specifications that provide those internal variable states: if before SnipPy users could select any inputs
to provide an output for, creating disconnected examples for synthesis, the interaction model would
like to force them to provide examples in order. If they are specifiying the sum over a range, the input
interface would look like so:

sum = 0
f o r i i n range ( 1 , 5 ) :

sum = ??

# i sumin sumout

0 1 0 j

1 2 0
2 3 0
3 4 0

# i sumin sumout

0 1 0 1
1 2 1 j

2 3 0
3 4 0

On the left is the sketch into which an expression for sum will be synthesized. In the middle is an
initial box for entering outputs based on the inputs. In SnipPy, the user could provide an output for
any row. However, in order to make sure the examples correctly encode all intermediate values of sum
for the synthesizer, in LooPy the interaction constrains the user to provide good specifications.

First, the interaction model does not allow skipping iterations in a loop. Once an iteration is
skipped, we have no further indication of the value of sumin in any subsequent iterations. In the
example in the middle, the user will be barred from switching to any other row. Second, once the
user does enter an output value in an iteration, this value is used as an oracle to compute the next
in value for the variable. In this simple example, sumout of iteration i immediately becomes sumin of
iteration i +1, but if there are additional computations between the current and the next assignment
to sum they are also performed.
Evolving the entire interaction. Once such programs were working, we were not satisfied: few
interesting loop programs have a single straight-line block where we would only want to synthesize
one assignment. However, the moment we want to synthesize a second assignment, say x = ??
followed by y = ?? and the two are interdependent, x using y, this means the before-state of y when
used to synthesize x was actually incorrect, and we are right back to where we started.

The specifications had to change to handle this case: the user would specify several outputs at
once, comprising the effects of the entire block, and the synthesizer would come up with an assignment
sequence to support all of them (Figure 3a). This introduces an opportunity to handle tasks where
the order of variables to assign is finicky: if the variables specified are unordered, the synthesizer can
help the user come up with the assignment order given the values in the examples.
Changing the synthesizer. We now know x and y must both be assigned synthesized expressions,
but we no longer know in what order. Of course, once information was removed from the specification,
this impacts the synthesizer, and we must change it to support the new specifications. Specifically,
we needed to support any possible sequence of assignments leading to the same final state where all
outputs provided by the programmer were assigned.

We generalized our synthesis algorithm using the following observation: while k variables have k!

possible orderings and any of them could be part of the target program, many of the orderings share
intermediate states. For example, when synthesizing x,y,z = ??, the initial state is shared between
all six orderings, the intermediate state where only x has been assigned its provided value is shared
between two of them, and the state where both y and z have already been assigned is also shared
between two orderings: assigning y and then z and assigning z and then y.

More generally, while there are k! orderings of k variables, there are only 2k intermediate states
including the initial and goal states. When using bottom-up enumeration with Observational Equiv-
alence (which we were), the state before a synthesized expression is key: an enumerator for each
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(a) Entering an output for one iteration in LooPy is used to compute the variable values for the next iteration.

𝜎𝑠𝑡𝑎𝑟𝑡

𝜎{rs}

𝜎{count}

𝜎{last}

𝜎{rs,count}

𝜎{count,last}

𝜎{rs,last}

𝜎𝑒𝑛𝑑

rs = ?

rs = ?count = ?

count = ?

last = ?

(b) LooPy’s intermediate state graph. Each state except �end holds its own enumerator searching for assignments
to variables that will lead to a next state in the graph. This covers jVarsj! orderings in 2jVarsj enumerators.

Figure 3. LooPy interface and internal data structure. Figures originally from [9].

single expression is initialized on its input states. Our observation means that intermediate states that
are shared can share an enumerator, and the same enumerator can look for expressions that, when
assigned, will lead to any of the next possible intermediate states. The LooPy enumerator comprises
2k OE enumerators in an intermediate state graph (Figure 3b), where a solution is a path through
the graph specifying the assignments.
Added benefit and one last change. As with RESL, changes to the synthesizer open up new op-
portunities for the interaction: Once enumeration uses the intermediate state graph, the synthesizer’s
grammar can be extended to top-level conditionals easily: conditions are searched for at the initial
state, and graph edges include which examples they match for, allowing the same data structure to
test all possible partitions into then and else branches (including no conditional) at once.

Once conditionals are added to the langugae, of course, the user can expect to synthesize inside
of a conditional as well. This meant that the live execution that transforms the after-state of a hole
into the before-state of the next iteration must support running the computation until the next time a
branch is entered, something that did not break any of the components, just needed to be supported.

LooPy was the first project developed after the co-design methodology was formulated. LooPy’s
development was the smoothest of all three projects, and was even smoother than SnipPy’s, despite
the fact that SnipPy required far fewer changes to both interface and synthesizer than LooPy.

5 Discussion
Following these examples of implementing synthesis co-design, we conclude by lessons we have learned
from working on the interaction and the synthesis algorithm in tandem. We hope other synthesis
researchers find these lessons helpful and encourage them to adopt co-design as part of their work.
A more streamlined process. We must begin with the simplest argument for co-design: when
working in tandem, less work is wasted. The Granular Interaction Model (Section 3.1) included an
affix predicate concerned with retaining the initial part of an invocation sequence, which was discarded
once we started work on a synthesizer and decided to expand the scope beyond linear sequences of
function calls. Moreover, once we decided on a REPL as the base programmer workflow to modify, this
introduced the possibility of the user editing code between synthesis iterations, rendering theoretical
work on the iterative refinement loop of the original GIM irrelevant.

Design work on the interaction alone caused interaction and synthesizer to diverge, and the work
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invested in both could have instead furthered the end product. PLATEAU workshop participants
asked for an estimate of the speedup: RESL took almost two years of design and development work,
whereas SnipPy took two months and LooPy about four months.
Added benefits. The effort of, essentially, developing two projects at once rather than one at a
time is a more complex effort with more to juggle. While the wasted effort of trying to develop one
and then the other should be a sufficient deterrent, there are also positive outcomes to practicing
co-design. Specifically, working on both sides of synthesis in tandem means there is time to recognize
opportunities opened up by changes made early on, when acting on them is still convenient and cheap.

The changes we described to the RESL synthesizer enabled us to add any new families of predicates
we choose to the synthesizer, which meant we could decide which ones would be a best fit for the
interaction we were building. Changing LooPy’s interaction made it clear that we had to extend the
language to include assignment sequences. And changing LooPy’s synthesizer to support sequences
made it easier to also support conditionals.
Human solvers. “Human in the loop” notions of program synthesis are often utilized to provide
the algorithm with more information. These often take the shape of active learning-style algorithms,
turning to the user to disambiguate [24]–[26]. These are the results of centering the algorithm in the
design process. However, when the interaction is centered, human in the loop can mean something
else as well: how the interaction can guide the user in acting as a solver, providing bits of information
that are hard or undecidable for the algorithm to get but given guidance from the interaction easy for
the programmer to provide.

SnipPy’s small step interaction model encourages the programmer to think in small slices of the
target program, thereby dividing up a large synthesis task into multiple smaller ones that are easier to
solve. Likewise, RESL asks the user to introduce a sketch by marking a subexpression and indicating
“fix this”, an action that on the one hand naturally flows from inspecting that same subexpression’s
intermediate results as the part of the interaction centered on comprehension allows, and on the other
hand provides the synthesizer with a smaller sub-problem to solve. LooPy’s examples hinge on the
affordance of its interface—a table of rows wants to be filled one row after another—and adds a
simple constraint disallowing the skiping of rows.

If original human in the loop synthesizers treated the user like a SAT or SMT solver, an entity
that can take a complex input and return a complex model that can be considered correct, then
shifting our perspective to the interaction allows us to treat the user more like one would treat a deep
learning model: a helper that must be delegated to with care and whose answers must be considered
in context and whenever possible validated.
End goal. Co-design is an open-ended process, like iterative design is. It is therefore hard to
answer questions like how many iterations are needed before convergence. Sometimes (e.g., SnipPy)
the starting point is relatively close to a feasible point in the space, which means the process can
converge quickly. Other times, e.g., RESL, the initial gap that needs bridging before a feasible point
in the space is reached is larger.

Each time the system is at a steady state, a feasible point in the space, this raises another question:
have we converged or do we keep iterating? At this point, the process reduces to classic iterative
design: is the current prototype sufficient, or can we incorporate some newly available information or
feature to improve it? While it looks like the end goal can shift quite radically in such a design loop,
this is not necessarily a bad thing. One can always stop as soon as a feasible point in the space is
reached, staying as close as possible to the original goal, but the shift away from the main goal can
also be a force for novelty, particularly when it happens thanks to an unexpected ability uncovered in
the course of co-design.
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