
Debugging into Existence with Program Synthesis
Guy Frankel*

University of Edinburgh
United Kingdom

g.frankel-1@sms.ed.ac.uk

Shay Segal*
Technion

Haifa, Israel
shaysegal@campus.technion.ac.il

Hila Peleg
Technion

Haifa, Israel
hilap@cs.technion.ac.il

Abstract—When modifying an existing codebase to handle new
functionality, programmers will often debug the program until
the insertion point for the new code. This method, termed De-
bugging into Existence, helps programmers familiarize themselves
with the surrounding code and runtime state. Despite its real-
world usage, it is limited by the inability to test potential code
past the first time the location is called, since added functionality
would change the future state making it irrelevant.

Prior work has pioneered Live Execution over partial pro-
grams, with extensions using the provided values for synthesis
by Programming by Example. In this work, we present DESYNT,
a debugger extension that integrates live execution and program
synthesis to extend the Debugging into Existence interaction
model. DESYNT grants programmers meaningful runtime infor-
mation across many executions, by allowing them to manipulate
program state according to the desired functionality. Based on
the state provided by the programmer, DESYNT then synthesizes
programs that capture this functionality. We evaluated DESYNT
in a between-subjects study on 10 users, and found that in
tasks that do not involve complex fault localization, DESYNT
reduces time to completion and concentrates programmer effort
into fewer code locations. In addition, we found that users
that used DESYNT spent more of their task time debugging,
indicating DESYNT supports Debugging into Existence for those
that already use it.

I. INTRODUCTION

Programmers often begin writing a program or a feature
with only a vauge idea of what the target program should
eventually do. Essentially, they work through the precise spec-
ification of the code by writing the code. In 1983 the name ex-
ploratory programming was coined for this phenomenon [44].

A specific instance of this has emerged in data-intensive
environments. A programmer needs to make use of unknown
(and perhaps underspecified) data that is easily made available
by running the program. For example, they are writing a
bookshelf application that queries a cataloging website such as
HARDCOVER.APP [3] and want to extract information from the
response JSON, but they are not certain of the structure of the
response, nor of the API functions used to manipulate it. To
that end, they use exceptions or mechanisms like assigning an
expression of type Nothing (e.g., Scala’s ???) to create a com-
piling program that can run up to the point where the data is
known and can be examined. In our example, the programmer
would set a breakpoint on line 6 to examine responseJson.

*Contributed equally.

Some developers call this workflow “debugger driven devel-
opment” [2], [4], but in the research literature it is formally
known as Debugging into Existence [41]: programmers use
breakpoints during debugging to inspect variable values and
the debugger’s REPL to test out expressions that can then be
copied over to the code, e.g., discovering where the number
of pages is stored in the JSON.

The shortcoming of Debugging into Existence as a tech-
nique is that it only gives the programmer access to the first
iteration. If the handleBook function runs within a larger loop
that, for example, fetches books from a list fetched from
elsewhere, then only the first response will be inspected. If
the JSON is different between the first and second books,
e.g., some books do not have a "pages" field, then the code
resulting from the inspection of the list may be unsuitable or
crash, which means the error must be understood before the
exploration can continue.

When the runs of handleBook are independent, the user can
use a print or some other conceptual nop as the place for
their breakpoint, and break again at the next calls to inspect
additional JSONs. However, the result may be important for
getting to the next iteration. This is shown here as the trivial
case where the next line depends on it, but can be more
involved, e.g., the next iteration might use data that is not
yet extracted here.

Live execution. We extend the Debugging into Existence
workflow using the concept of live execution [14] designed to
evaluate partial programs. Live execution pauses during run-
time at program holes to collect values from the programmer.
By replacing the exception with a hole, which we mark as
??, and employing live execution, the programmer can assign
desired values to a variable and continue past the first iteration
of the program’s run.

Programming by Example. The LOOPY synthesizer employed
live execution to collect output values for program synthesis
by examples in a live programming environment [14]. The
idea is that variable values comprise the example’s input, and
provided values provide the output. From these, a program
satisfying the examples can be generated. However, LOOPY’s
live programming environment is limited in its depth of
executions, and requires constant evaluation of the code. This

makes it hard or impossible to use for large codebases or for
code that interacts with the environment, e.g., reading files
or calling web services. For functions like handleBook, the
programmer would still need to use the debugger.

However, once live execution is employed to execute past
the hole, the same base insight of LOOPY still holds: an
input-output example can be constructed from the values of
variables before the hole and values assigned to the hole by
the programmer when debugging past it. These values can then
be sent to a Programming by Example (PBE) synthesizer [6],
[19], [21], [48], [49] and programs that satisfy the examples
can be suggested to the programmer.

The DESYNT system. We present DESYNT, a debugger
extension to leverage program synthesis during Debugging into
Existance. DESYNT combines debugging by live execution
past a predetermined hole with a PBE synthesizer, that can
suggest hole completions to the programmer. As a way to
offer flexibility to the user, we include in DESYNT two
views: a user-triggered view where it is up to the programmer
to request a program after any number of iterations, and a
triggerless view that starts trying to generate programs once
a minimum number of input-output pairs is reached, and any
time a program is available it is suggested to the programmer.
The triggerless view offers ease of use (as described by
Jayagopal et al. [24]), whereas the user-triggered view offers
users control of when they would like to see a synthesis result.

Once a candidate program—a program that satisfies all
examples so far—is available, its output value can be used
to step over the hole, or a different output can be provided.

Our results show that in tasks where fault localization
is not a major component, DESYNT improves the time to
task completion, as well as concentrating the programmer’s
effort on the specific point of the change. Moreover, tool
usage is correlated with spending more time debugging than
performing other activities—manually writing code and code
exploration. While we do not have enough information to show
causation, this at least indicates that DESYNT can support
programmers whose work style favors debugging. There was
no real difference in how users reacted to the different views
of DESYNT or in their utility, indicating that both can be
useful to different participants in different scenarios. However,
we did observe a behavioral difference that appears driven by
the differences between the views: programmers in the user-
triggered view provided more examples spent more iterations
validating a synthesis result after a successful synthesis call.

Contributions. The contributions of this paper are:

▷ Extending the Debugging into Existence workflow past the
first iteration using Live Execution.

▷ Integration of Programming by Example into this workflow
to generate the new code.

▷ DESYNT, an implementation of our interaction model in
VSCode, with two different views that trigger synthesis
differently.

▷ Analysis of user behaviour across two views of DESYNT.

II. DESYNT BY EXAMPLE

The programmer sets out to complete handleBook, which
is called for every book in a series of books, finding the
maximum length so far at each point. This time, they approach
this task with DESYNT.

Instead of the exception they added to the code in Sec. I,
they now set a hole, denoted ??, which indicates an expression
assigned to the variable length:

With DESYNT enabled, ?? is a valid token in Python, though
it cannot be left in the file later. The programmer starts the
debugger, which automatically adds a breakpoint to the line
with the hole, and breaks the run there.

First change, in user-triggered view. Once the breakpoint is
hit, the programmer can use the debugger to inspect the state
of the code, as before, and when they find in the JSON that
the number of pages is 216, they can enter it as a value for
length:

They can then run or step past the breakpoint, and length

will be assigned the entered value. Since handleBook is called
several times during the run, the breakpoint will trigger each
time. The second time looks like so:

Here, the JSON is similar, and they again set the value of the
hole and continue.

At this point, the programmer can stop the debugger and
enter code that they tested out in the debug console, but they
can also press the Generate button to task DESYNT for a
candidate program.

The DESYNT synthesizer suggests the expression
responseJson["data"]["books"][0]["pages"] to fetch
the number of pages out of the JSON by inserting it in gray
in place of the hole in the editor.

The programmer can keep running to see how this sugges-
tion fares on additional data, or accept it immediately and stop
the debugger. In this case, they accept it, which adds it to the
code and stops the run.

Second change, in triggerless view. The programmer now
runs the program without debugging, and gets an exception:
TypeError: ’>’ not supported between instances of ’

NoneType’ and ’int’

The reason for this, unbeknownst to the programmer, is that
the JSON for the fourth book has no value for "pages", so
their code populates the length variable with None.

The programmer knows they will probably need to modify
the length variable based on data they have not yet seen, so
they move the raw value from the JSON to an intermediate
variable and insert a new hole to assign to length:

The programmer runs DESYNT in its triggerless view.
Initially, they only see iterations with the correct value in
numPages which they transfer to length. After three iterations,
the DESYNT synthesizer tries behind the scenes to find a
program that satisfies all the provided input/outputs. At this
point, the program is trivial: numPages, and it is suggested to
the programmer, so when the breakpoint is triggered for the
fourth iteration, the program suggestion is displayed, as is the
value it computes as a suggested value to assign to numPages.

Here the programmer notices that the suggested value is
None, and upon closer inspection of the JSON see that this
is because there is no value there. They now need to make a
decision: what happens when the number of pages is missing?
It is the on-the-go understanding of the problem space and the
need to make decisions like this that make Debugging into
Existence exploratory.

The programmer decides to take the current book out of the
running for longest book, and the easiest way to do that is to
set its length to 0. They then set this as the value of length

in this iteration.

Since the value of length and the suggested value are
different, this indicates to DESYNT that the programmer has
ruled out the suggested program, numPages. DESYNT calls

the synthesizer again. By the next time the program breaks,
DESYNT suggests a new program:

The programmer accepts the new suggestion and DESYNT
adds it to their code.

III. THE DESYNT SYSTEM

DESYNT is an extension of the Python debugger in VS-
CODE [36].

A. The DESYNT interaction model

Adding holes to Python. DESYNT extends Python’s syntax
with a new expression, a hole denoted ??. Holes can be used
in place of any expression, denoting unknown code. Placing
a hole indicates the programmer’s expectation that it will be
replaced with a program snippet. A program with a hole, called
a sketch [45], cannot be executed by the Python runtime, but
can be run in DESYNT via the debugger. DESYNT does not
alter the Python debugger, but rather executes the user code
through a wrapper that replaces the hole with a variable.

The Debugging into Existence paradigm centers the pro-
grammer’s attention on one location that is re-run to again
and again. We therefore limit the sketches in DESYNT to a
single hole. Additional holes will trigger an error.

Running programs with holes. As shown in Sec. II, once the
programmer sets a hole in a program, they can use DESYNT
to start the debugger and run the program normally up to the
hole. When debugging, holes act as breakpoints that cannot be
removed, i.e., the program will always break before the hole’s
evaluation as it does not have a program to evaluate.

At the breakpoint for a hole, the IDE behaves as in any other
breakpoint: the stack and variable states can be inspected, the
VSCode debug console can be used to evaluate expressions,
and the run of the program can be stopped. This allows the
user to explore the program as they would in a debugging into
existence session in a regular debugger. If the hole does not
have a value, running past the current statement is disabled.

Evaluating holes. Holes are evaluated by live execution: the
user is asked to provide a value for the hole, which is then set
into the assigned variable or returned from the function. This
is similar to the ability to set the value of a variable while
debugging, a feature that is available in many IDEs.

If a candidate to replace the hole already exists, DESYNT
will evaluate it and automatically set the value of the hole
to be the evaluation result. However, it will still break before
the hole, allowing the programmer to examine the result and
decide whether the value is correct or if it needs to be changed.
The user can keep running with a candidate program for as
long as they wish, until the run of the program terminates. If
the run ends when there is a candidate program, the user will
be asked whether they want to accept the current candidate. If

(b)

(a) (c)

Fig. 1: (a) The DESYNT history side panel. (b) The Generate
button for the user-triggered view. (c) The VSCode debug
tooltip including an accept button on the right.

the programmer replaces the value from a candidate snippet,
this invalidates the candidate, which means there will not be
a candidate snippet until synthesis is run again.

Generating candidate snippets. DESYNT generates program
suggestions by calling a PBE synthesizer. Each input-output
pair provided to the synthesizer as specification comprises
the state of available variables before the hole’s breakpoint
as input and the value provided by the user to step over the
hole as output. All input-output pairs collected throughout the
debug session are stored in the “DESYNT history” side panel
(Fig. 1a), where they can be inspected, and are given to the
synthesizer every time it is called, so resulting suggestions will
be consistent with everything the programmer entered so far.

Once a candidate program is returned by the synthesizer, it
replaces the hole in the editor, but is grayed out to denote it
is a debug-time value. And, as for any other variable while
debugging, the editor will also show the debug-time value
of the variable the hole is assigned to at the breakpoint.
This allows the user to quickly assess whether the current
candidate is correct for the current inputs without having to
run it separately in the debug console.

Accepting a snippet. If the programmer is happy with a
suggested snippet, they can use an accept button that is added
to the VSCode debug tooltip (Fig. 1c). The program is then
added to the editor window replacing the hole, and the file is
saved. If the user stops the debugger, no change is made to
the file even if there is a current candidate.

B. The different views of DESYNT

The two views of DESYNT differ in when a program
is suggested to the user. Their names, user-triggered and
triggerless, are derived from the work of Jayagopal et al. [24].

The user-triggered view. When DESYNT is run in user-
triggered view, a second DESYNT panel is added to the IDE
window above “DESYNT history”, which contains a Generate
button (Fig. 1b). No attempt to generate a program will be
made until the user presses the Generate button, no matter
how many iterations have passed.

When the user presses Generate, the DESYNT synthesizer
is called with every input-output pair accumulated so far, and
if a program is found, it is set as the current candidate. Even

if the current candidate is invalidated, the synthesizer will not
be called again unless the user asks for it explicitly.
The triggerless view. When DESYNT is in triggerless view,
the synthesizer is called automatically. It is first called after the
programmer provides three examples. After that, it is called
every time the user invalidates the current candidate—since it
is called with all accumulated input-output pairs, it is always
called with at least three examples.

C. The DESYNT PBE Synthesizer

The synthesizer behind DESYNT is a bottom-up synthesizer
based on concrete finite tree automata [49].

The synthesizer runs with a timeout of 15 seconds. This is
longer than other interactive synthesizers (e.g., [14]), but in
the context of the interaction the extra time will not be felt
by the user. The synthesizer is launched once the programmer
runs past the breakpoint, but the result is not needed until the
program breaks again and the debug view is populated, which
can take seconds and sometimes more.

IV. STUDY

We evaluated DESYNT with a 2-hour lab study, comparing a
no-tool control to two treatment groups: the user-triggered and
triggerless views of DESYNT. This research was performed
under the oversight of the institutional review board at Tech-
nion.1

Participants. We recruited 11 participants (10 M/1 F), all
third-year undergraduate students at Technion. We recruited
students who had just completed the “Introduction to AI”
course as a means to ensuring basic knowledge of Python (the
class does not teach debugger usage explicitly, but is coding-
heavy). We advertised via course mailing lists and texting
groups. Participants were compensated $13/hour. Participants
were given a pretest for minimal competency in Python and
in using the VSCode debugger. One participant (P4, M) failed
the pretest and was excluded from the remainder of the study.
Protocol. We performed a between subjects study with a
control condition (no-tool) where participants used VSCode
with its built-in debugger and no synthesizer, and two exper-
imental conditions, user-triggered and triggerless for the two
views of the tool. Participants were randomly assigned to a
condition, using online counterbalancing. Participants in the
experimental conditions were shown a video about DESYNT,
and all participants were then guided through an example
task, where control group participants were guided through
debugging into existence, and experimental group participants
were guided through debugging into existence and then solving
the same task using DESYNT. Participants were then asked to
solve three tasks, all carried out in the same order, each with
its assigned timeout and with a way for the paticipants to self-
validate their solution. Finally, participants were asked to fill
out a survey about their experience. Participants in the user-
triggered or triggerless groups were shown a video of the other
view of the tool and asked for their opinion about it.

1Approval number 2024-072.

Tasks. After a guided training task (deriving an arithmetic
expression from examples), participants performed three tasks
in this order:
Task 1: Bounded Circles (new feature). Participants were

given code that visualizes circles moving freely on
a canvas, and asked to add a restriction on circles
leaving the canvas. Baseline code used an API that
was likely unfamiliar to participants, and changes
to one frame directly impact the state of the next
frame (iteration). The provided code was one file with
70LOC. Task timeout was 20 minutes.

Task 2: VIN—Vehicle Identification Number (fault localiza-
tion and bug fixing task). Participants were given a
codebase that verifies vehicle identification numbers.
The codebase included tests for the code, five of
which fail. Not all failures result from the same bug,
and some of the code is superfluous to the errors.
Participants were asked to locate and fix the code
that fails the tests. The provided code was 1921LOC
spanning 24 files. Task timeout was 25 minutes.

Task 3: Scheduler (reverse engineering). Participants were
given a blackbox implementation of a scheduler
and asked to recreate it in their code. Specifically,
they were given an event ordering supported by the
blackbox implementation that they should support.
The scheduling loop is dependent as earlier decisions
impact later ones. The provided code was two files,
totaling 141LOC. Task timeout was 20 minutes.

V. RESULTS

A. Task 1: Bounded Circles

Fig. 2a shows the time to solution for the Bounded Circles
task. Only three of the six participants in the two tool groups
(P3, P6, and P7) used DESYNT for this task. Therefore in
our analysis we do not consider participants in their original
groups, combining the three DESYNT users, regardless of
view, vs. seven tool not used users.

Solving the task without DESYNT took an average of
9.9min (8.2min without timeouts), whereas the participants
who did use the tool took 3.5min–8.5min. One participant
from the control group timed out.

Three participants that had access to DESYNT decided not
to use it; one of those being P2, that stated “I had a solution
in mind and it wasn’t so bad (besides lots of if statements),
but I chose it because I thought it would be faster than to ‘tell’
the tool do this, do that”.

The provided code for this task used numpy. DESYNT
participants all solved the task with a single line of vectorized
numpy code, while those that did not use the tool added the
new feature using for loops. The three remaining participants
who had access to DESYNT but did not use it (P2, P8 and
P1) used for loops, but both P10 and P2 (mentioned above)
commented that they knew a better solution existed.

We coded participant sessions into three activity types,
exploration, code editing, and debugging, (using DESYNT was

(a) Time to complete the Bounded Circles task. Because of low tool
usage in this task, we consider participants as tool used/not used
rather than their original study groups.

(b) Portion of the participant sessions spent exploring, writing code,
and debugging.

(c) How many participants edited each file line (files are aligned).
discrete_bounds.py is the only file in the task.

Fig. 2: Results for Task 1: Bounded Circles

considered debugging, as it takes place in debug time). Fig. 2b
shows the percentage of sessions spent in each activity type.

In the Bounded Circles task the portion of the time spent
exploring was low, and the majority was divided between
code editing and debugging. As Fig. 2b shows, tool use
is the determining factor as to where the majority of the

participant’s time was spent. Participants that used DESYNT
spent a much larger portion of their time debugging when
compared with those that did not; the DESYNT user with
the smallest portion of debugging debugged twice as much,
proportionally, compared to the no tool used participant with
the largest portion debugging.

In order to understand the locality of changes made by
participants, we counted the number of users that edited each
line. We assigned new line numbers to align all versions of
each file as follows: as in a line-based diff, any insertion moved
both sides by the number of lines inserted; when aligning all
participant tasks to each other, this moved the next original
line number by the size of the maximum insertion at that
location. This resulted in a line numbering where each line
could be either changed (i.e., an original line) or added (i.e.,
an inserted line), but never both. The number of users that
edited each line is shown in Fig. 2c.

In the Bounded Circles task, DESYNT users added no new
lines, with almost all changes being localized to a single line,
using numpy vector operations. Users without the tool, on the
other hand, inserted a number of lines before and after that
line; these are for loops with varying lengths of loop bodies.

B. Task 2: VIN

Time to complete the VIN task is shown in Fig. 3a. Five out
of six participants in the experimental groups used DESYNT
in this task. One tool user (with the triggerless view) timed
out, as did two no-tool participants and the one participant in
the triggerless group who did not use the tool. On average,
DESYNT users completed the task in 19min, (17.5min when
excluding participants who timed out). Participants who did
not use the tool took 19.3min on average, (10.8min excluding
timeouts). The fastest time to completion—just over four min-
utes, and almost 10 minutes faster than any other participant—
was a no-tool user.

This task involved fixing a bug in a multi-file codebase.
This impacts the portion of the time spent exploring the code,
as seen in Fig. 3b: this was the task where participants spent
the largest portion of their time exploring, regardless of their
group and of whether they used DESYNT or not.

Participants that used DESYNT spent more time exploring
compared to participants that did not use DESYNT. This is
likely correlated with DESYNT participants having trouble
with the tool in this task: only 2 of the DESYNT users placed
the hole (??) in a useful place in the code.

Two no-tool participants (P5, P9) not familiar with the
strip functionality in Python used a for loop to remove
whitespaces, while no DESYNT users did this.

Moreover, the heatmap of file modification locations
(Fig. 3c) show that both users with and without DESYNT
made more widespread modifications. Participants without
DESYNT edited the target file, toolbox.py, in more locations.
Interestingly, DESYNT users interacted with a number of other
files, while participants without the tool users did not. These
were test files, and the modifications were specifically to better
run DESYNT, e.g., modifying test_module.py to run specific

(a) Time to complete the VIN task.

(b) Portion of participant sessions spent exploring, writing code, and
debugging.

(c) How many participants edited each file line (files are aligned).
These four files were the only ones edited out of 24 files provided
with the task.

Fig. 3: Results for Task 2: VIN.

tests and reach the breakpoint with relevant data faster (P8)
or changing the order of tests (P2).

C. Task 3: Scheduler

Fig. 4a shows times to complete the Scheduler task. All
participants given DESYNT used it in this task. This task had

(a) Time to complete the Scheduler task.

(b) Portion of participant sessions spent exploring, writing code, and
debugging.

(c) How many participants edited each file line (files are aligned).
These two files are the only ones provided with the tasks.

Fig. 4: Results for Task 3: Scheduler.

the starkest difference between participants with and without
DESYNT: DESYNT users completed the task in 5.8min on
average and no timeouts, whereas all no-tool users timed out.

Fig. 4b shows that participants in the no-tool group spent
a larger portion of their time writing code than DESYNT par-
ticipants, but perhaps more importantly, they spent a smaller
portion of their time debugging; the largest portion spent
debugging in the no-tool group (P5) is still less than the least
for a DESYNT user (P7).

DESYNT users modified the code in fewer locations, com-
pared to no-tool users (Fig. 4c). Code additions performed

Fig. 5: Left: Minimum, maximum, and median number of
examples provided before every synthesis event, by task. Since
the triggerless view first synthesizes after three examples, this
is the median, but one user changed the suggested output after
synthesis in VIN, raising the maximum to four. Right: Mini-
mum, maximum, and median number of times the participant
continued running to the breakpoint to validate the result.

by DESYNT users were to facilitate their use of DESYNT;
specifically, P6 and P8 used print and assert statements
to ensure the generated code satisfied the desired behavior.
In comparison, no-tool users added a larger number of lines.
Additionally, P10 changed the jobs.json file that defines the
data read by the code in order to better understand the role of
each parameter in the function they reverse engineered.

D. Additional results

The left side of Fig. 5 shows the number of examples users
provided before synthesis. Participants using the user-triggered
view provided more examples before synthesis for all tasks
compared to triggerless users, where synthesis was always
attempted after three examples. In the triggerless view one
synthesis call is indicated as happening with four examples;
this is the only case in our study where synthesis ran after three
examples and the user immediately invalidated the candidate
snippet with an additional example, which launched synthesis
again. One participant in the user-triggered view (P8) worked
in short bursts of two examples for most of the study. The
scheduler had the largest number of examples provided before
synthesis while, on average, VIN had the least.

The right side of Fig. 5 shows the number of validation
iterations participants performed after synthesis and before
accepting a snippet, where a validation iteration consists of the
user checking that the synthesized snippet produces the desired
result for the variable values at the breakpoint. The trend here
is similar to the examples provided: although triggerless users
had no set number of validation examples they had to provide,
on average they provided less except in VIN. Additionally, in
user-triggered users we see large variance across all tasks.

E. Post-study survey

After completing the tasks, participants from the treatment
groups (user-triggered and triggerless, 6 participants) filled out
a survey about their experience, ranking 17 statements from
“strongly disagree” to “strongly agree”. The questions and the
distribution of answers are shown in Tab. I.

In general, DESYNT was well-received by users, who
indicated for both views that the interaction with DESYNT
provided users with the means to explore and understand
solutions easily, helped users understand complex behavior
and generated easy to understand code. Furthermore, DESYNT
helped users better translate their mental model.

The responses to two sets of questions stand out. First, in
both positive and negative wording of the statement, partici-
pants rated the ease of entering values approximately neutral.

Second, the questions indicating trust in DESYNT had a
mixed response. Users of the user-triggered view trusted code
suggestions less than triggerless participants, even though all
indicated that they understood suggested snippets well.

Finally, triggerless participants indicated that the amount of
examples before the synthesizer is launched is not intuitive.
This is shown in the survey, and P3 also indicated it in their
additional verbal comments after the survey.

VI. DISCUSSION

A. DESYNT’s utility depends on type of task

Our results hint that the type of task has an impact on how
useful DESYNT is. Like many other program synthesis tools,
DESYNT thrives as a tool for API discovery [12], [23], i.e., in
cases where the functionality is simple but the implementation
is difficult or uses an unfamiliar API. This was especially
relevant in the Bounded Circles task, where P6 and P7 both
noted that they would not have produced a solution without
the tool. Furthermore, P10 and P2, who both solved the task
without DESYNT and used a loop, remarked that they felt there
was a better solution that they did not know how to write.

It is also apparent that DESYNT’s utility depends on the
type of example the user is required to enter; P3 pointed out
that a problem with DESYNT is the need to enter a textual
representation of outputs, which might be objects. In the post-
study survey (Tab. I), participants on average scored the ease
of entering examples as fairly low, as well. This problem
shows up in existing testing tools [1], [33] as well as in code
generation tools [14], [15].

For user-triggered participants, who could provide any
number of examples before synthesizing, that number appears
to be affected by the difficulty of the task, with difficulty
approximated by the success rate of the no-tool group. Fig. 5
shows that participants in the user-triggered group provided
fewer examples in VIN task, and more in Bounded Circles
and Scheduler tasks. Similar dynamics are also present in the
number of validation iterations participants performed before
accepting a candidate. There does appear to be a discrepancy
on the Bounded Circles task, which had more examples and
validation iterations than VIN even though no-tool users fared

TABLE I: Post study survey of participants. Similar questions
that were asked both negatively and positively are grouped
regardless of their order in the survery.

Rating
Question Wording (avg) Replies

DESYNT was easy to use. Positive 4.0

DESYNT was difficult to use. Negative 2.0

Code suggestions are well integrated in the IDE. Positive 4.5

DESYNT helped me to understand complex behavior. Positive 4.8

DESYNT helped me understand how to translate
expected behavior into code. Positive 4.3

It was not easy to enter values as examples. Negative 2.5

Entering values as examples was easy. Positive 3.7

Placing a hole with ?? was easy. Positive 4.8

Placing a hole with ?? was difficult. Negative 1.2

The number of examples required to get a code
suggestion aligned with my intuition.† Positive 3.3

DESYNT’s functionality is well integrated in the IDE. Positive 4.8

Code suggestions were easy to understand in the
context of the program. Positive 4.5

DESYNT is a useful addition to the methods I use
for software development. Positive 3.5

I trusted code snippets that I accepted to
fulfill my intent. Positive 3.7

I understood suggested code snippets. Positive 4.8

Verifying a suggested code snippet was easy. Positive 4.3

DESYNT is a useful addition to my debugging arsenal. Positive 3.7
†only asked of participants in the triggerless group.

better in Bounded Circles. We believe this is a result of the
localization required in VIN, whereas the code required to
solve Bounded Circles is more complex than in VIN.

Related to this discrepancy, an interesting hypothesis stem-
ming from our results is that DESYNT’s utility depends on
knowing where the new code will go. Participants pointed
this out, e.g., P7. Tasks that have a large fault localization
component, e.g., VIN, are ones where DESYNT made no
real difference, whereas in Bounded Circles and Schedulers
DESYNT let participants make very local edits and insertions
and have far better outcomes in completing the task.

B. Using DESYNT correlates with debugger use

We find that when working with DESYNT users spent a
larger portion of their time in the debugger; this is simply
the result of DESYNT running inside the debugger. However,
for users whose usual development style heavily relies on
the debugger, DESYNT’s ability to run partial programs, in
addition to debug-time variable inspection, means they are
able to stay in the debugger longer than they could without
DESYNT. This is consistent with the variation in responses
to the survey questions “DESYNT is a useful addition to the
methods I use for software development” and “DESYNT is a
useful addition to my debugging arsenal” (Tab. I).

Further work is needed to understand how effective
DESYNT is for users with differing development methods.

C. Differences between user-triggered and triggerless

The view of the tool participants were assigned to does not
affect participants’ success as much as other factors, e.g., task
type. However, there are apparent differences based on the
differences in the interaction model.

The most notable difference between the two views are
seen in Fig. 5: user-triggered users provided more examples
before triggering synthesis when compared to the fixed three of
triggerless—across all tasks more than three examples were
provided on average before synthesizing. This is consistent
with the results of Jayagopal et al. [24], who found users
often provide much larger specifications than are needed to
complete the task.

Additionally, user-triggered users also used more verifica-
tion steps. This appears to correlate with the difference in
trust of the synthesized snippet between user-triggered and
triggerless users seen in Tab. I. Interestingly, this suggests that
when given control, users trust their choice less than when
choices are made for them.

This may also provide a reason for the paradoxical answers
in Tab. I, where, for user-triggered users, generated snippet
understandability and verifiability are high but trust is low.
This could be because in more difficult problems users may
have been unsure that the number of provided examples
covered corner cases and hence, when put in control and with
an uncertain mental model, understandability and verifiability
do not translate to trust.

On the other hand, for triggerless users we find that,
although trust is high, the number of examples required did not
effectively align with the participants intuition. This appears
to be linked with subsection VI-A; for easier problems, three
examples may be sufficient while for harder tasks users may
prefer to provide more examples to ensure they have captured
the complete behavior. However, users still place a large
amount of trust in DESYNT, when it decides when to generate.

D. Classification of DESYNT as a synthesis interaction model

Jayagopal et al. [24] introduced a framework for understand-
ing program synthesis (code generation) interaction models
with three axes in the design space: i) whether specifica-
tions are incidental or voluntary, ii) whether the initiation

of synthesis is user-triggered or triggerless, and iii) whether
the communication of results to the user is user-triggered
or triggerless. In Table 3, they show the matrix of options
for (ii) and (iii), noting that the quadrant for user-triggered
initiation and triggerless result communication is “empty by
construction”, as triggering the initiation of synthesis implies
triggering the communication of results. We argue, however,
that DESYNT ostensibly fits in the missing quadrant: while
setting a sketch and running the debugger is an initiation of the
synthesis “mode” of DESYNT, when in its triggerless view,
the decision to run the synthesizer behind the scenes is not
actively triggered, and a result will only be communicated to
the programmer when one is available.

Interestingly, once participants in the triggerless group
gained some experience with DESYNT, they would wait for
a synthesis event to happen after hitting the breakpoint three
times and entering output values; reminiscent of the triggered
result communication interaction model. This suggests that,
when a tool behaves predictably, it “moves” to a user-triggered
result communication.

However, this may change with a different synthesis engine:
in our current engine, synthesis cannot fail with three examples
then succeed with four examples, so if a program does not
appear after three examples, one will not appear later in the
session. A different code generation backend may behave
differently, yielding different results.

E. Threats to validity

Our study is subject to a number of threats to external and
ecological validity. The small number of participants in the
user study leads to limitations of the claims we are able to
make in regards to the results, e.g., we are unable to make
statistical claims from the data. In order to mitigate the threat
to internal validity caused by a large variance in a between-
subjectds study, all study participants are a homogeneous
group of students, which could limit the generalizability of the
results, though it has been demonstrated that CS students pro-
vide good participants for such studies [47]. Finally, tasks were
hand-picked to represent instances we theorized participants
would benefit from the debugging-into-existence paradigm.
This threatens the ecological validity of our results, since the
tasks may not be representative of codebases encountered in
the wild, and the interaction model provided by DESYNT was
not tested in such cases.

VII. RELATED WORK

A. Exploratory Programming

Exploratory programming began as a description of pro-
grams in AI research where there is no specific intended out-
put, but the result can be “eyeballed” by the programmer [44].
It has since been extended to more generally describe cases
where programmers start writing code before its behavior is
fully specified, thinking about their code as they write it [28],
[42], [43], [46].

Several specialized tools that target specific exploratory be-
haviors have been suggested, with a special focus on allowing

the programmer to backtrack or to maintain multiple versions
of the code that can be switched to efficiently [9], [26], [27],
[35], [50].

B. Debugging into Existence

Debugging into Existence was identified by Rosson and
Carroll [41] as the dynamic and incremental implementation
process that stems from edits driven by testing and debugging.
It is also weakly related to Babylonian-style Programming [40]
that helps users view live examples for smaller parts of the
code, allowing them to examine (and then edit) an inner part
of the code directly.

Debugging into Existence has been criticized [52] as a an
ineffective bug-fixing method, in particular in regards to fault
localization. This criticism is in accordance with our results:
the underlying workflow to DESYNT worked well when the
location of new code or broken code was known, but not when
actual, manual fault localization had to take place.

C. Interaction models for code generation

Code generation tools for programmers take many different
approaches. COPILOT [17] suggests potential program snippets
that can be tab-completed into the code editor based on only
textual file context. The exploratory nature of COPILOT use
was explored by Barke et al. [8], and was further highlighted
by COLADDER [51] and its interaction focused on refining
intent and creating sub-goals.

SNIPPY [15], LOOPY [14], and LEAP [13] are a fam-
ily of tools for code generation within a live programming
environment—an environment that provides continuous feed-
back on the state of the code as the code is being written—and
assisting the programmer in formulating specifications as well
as in validating the code generation result.

Several code generation tools [38], [39], [53] use an iterative
refinement loop where more specifications are provided to rule
out intermediate program candidates. Peleg et al. [38], specifi-
cally, does this in a REPL, which is a vehicle for a very similar
workflow to Debugging into Existence: a small program is
rerun against relevant data as it evolves. Peleg at al. target one-
liners, which are closer to the kinds of programs developed in
a REPL, whereas DESYNT targets larger imperative programs
as one would explore in a debugger.

The closest work to ours is CODEHINT [18], where the
programmer sets a breakpoint in the code, debugs to it, then
uses types and examples to demonstrate the intended value.
CODEHINT also uses an observational equivalence synthesis
engine with variable valuations at the breakpoint as inputs.
However, CODEHINT does not alleviate the issue of access
to dependent calls to the same code location: a user of
CODEHINT can run the code again with different inputs, but it
does not continue the execution with the user provided values
in the way that LOOPY does.

D. Programming by Example

Programming by Example (PBE) is a program synthesis
paradigm where intent is specified by pairs of input to output.

FLASHFILL [19], [20] is a PBE synthesizer integrated into
Microsoft Excel, where inputs are provided by table rows
and outputs by values added manually to a new column. The
FLASHFILL synthesis engine is powered by Version Space
Algebra, and in FLASHFILL++ [10] is improved with guarded
DSLs. SMYTH [34] harnesses live evaluation [37], which
carries holes with the evaluation result, yielding a typed,
symbolic value, then applies unevaluation to propagate the
example output back to the hole. In a similar vein, RESL [38]
and λ2 [16] perform downward propagation of examples into
looping constructs. Another common search method for PBE
is Observational Equivalence [6], [48], and its implementation
using Finite Tree Automata [49] is the one used by DESYNT.

PBE has been used for domain specific programs: Excel
formulas in FlashFill and regular expressions in tools like
REGEL [11] and REGAE [53]. Other synthesizers [14], [15],
[18], [38] target general programming, mainly centring on
primitive types as they are easier to provide examples for.

E. Interaction Models for Debugging

Interaction model work for debugging is mainly centered
around aiding comprehension and fault localization, i.e., the
hypothesis generation phase of debugging [5], [52], helping
the programmer better utilize debug-time information such
as execution traces, variable values, and location in the call
stack. THE WHYLINE [29], [30] allows the programmer
to ask “why” and “why not” questions about the state of
the program at a breakpoint, including about the history of
the execution trace. MICROBAT [32] recommends suspicious
steps for the user to manually inspect, and ENLIGHTEN [31]
uses statistical fault localization to improve the results of
a similar process. HYPOTHESIZER [5] uses a database of
hypotheses and tries to match them with demonstrated faulty
behavior. ROBIN [7] employs an LLM agent that has access to
the debugger to perform assisted “conversational debugging”.
UNFOLD [22] lifts the debugging experience into live pro-
gramming, to help programmers track buggy states in event-
driven UI code. MEMINSIGHT [25] collects memory-related
information during program execution, allowing programmers
to explore memory usage patterns, identify leaks, and inspect
allocation call trees and reference paths that prevented garbage
collection. Unlike these, DESYNT does not center on fault
localization, and as shown in Sec. V, is in fact less useful when
mixed with tracking a fault. CODEHINT [18], discussed above,
is the most similar to DESYNT in employing the debugger
mainly as an inspector in a development task, but DESYNT’s
ability to access the code multiple times throughout a single
run makes it a tool for inspection and comprehension even if
code generation is not employed.

ACKNOWLEDGMENTS

Funded by the European Union (EXPLOSYN, 101117232).
Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be

held responsible for them. We would like to thank the VL/HCC
reviewers, whose notes and suggestions made the final draft
so, so much better.

REFERENCES

[1] Accessed 2025/05/11. [Online]. Available: https://hypothesis.works/
[2] “debug-here 0.1.0 - docs.rs,” https://docs.rs/crate/debug-here/0.1.0, docs

version 0.6.0 (17de230 2022-01-09).
[3] “Hardcover,” accessed 2025/03/26. [Online]. Available: https:

//hardcover.app/
[4] “Railsconf 2014 - debugger driven developement with Pry by Joel

Turnbull,” https://www.youtube.com/watch?v=4hfMUP5iTq8, 2014.
[5] A. Alaboudi and T. D. Latoza, “Hypothesizer: A hypothesis-based

debugger to find and test debugging hypotheses,” in Proceedings of
the 36th Annual ACM Symposium on User Interface Software and
Technology, 2023, pp. 1–14. [Online]. Available: https://www.doi.org/
10.1145/3586183.3606781

[6] A. Albarghouthi, S. Gulwani, and Z. Kincaid, “Recursive program
synthesis,” in Computer Aided Verification: 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings 25. Springer, 2013, pp. 934–950. [Online]. Available:
https://www.doi.org/10.1007/978-3-642-39799-8 67

[7] Y. Bajpai, B. Chopra, P. Biyani, C. Aslan, D. Coleman, S. Gulwani,
C. Parnin, A. Radhakrishna, and G. Soares, “Let’s fix this together:
Conversational debugging with GitHub Copilot,” in 2024 IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2024, pp. 1–12. [Online]. Available: https:
//www.doi.org/10.1109/VL/HCC60511.2024.00011

[8] S. Barke, M. B. James, and N. Polikarpova, “Grounded Copilot:
How programmers interact with code-generating models,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLA1, Apr. 2023. [Online]. Available:
https://doi.org/10.1145/3586030

[9] T. Beckmann, J. Bergsiek, E. Krebs, T. Mattis, S. Ramson, M. C. Rinard,
and R. Hirschfeld, “Probing the design space: Parallel versions for
exploratory programming,” Art Sci. Eng. Program., vol. 10, no. 1, 2025.
[Online]. Available: https://doi.org/10.22152/programming-journal.org/
2025/10/5

[10] J. Cambronero, S. Gulwani, V. Le, D. Perelman, A. Radhakrishna,
C. Simon, and A. Tiwari, “FlashFill++: Scaling programming by
example by cutting to the chase,” Proceedings of the ACM on
Programming Languages, vol. 7, no. POPL, pp. 952–981, 2023.
[Online]. Available: https://www.doi.org/10.1145/3571226

[11] Q. Chen, X. Wang, X. Ye, G. Durrett, and I. Dillig, “Multi-
modal synthesis of regular expressions,” in Proceedings of the
41st ACM SIGPLAN conference on programming language design
and implementation, 2020, pp. 487–502. [Online]. Available: https:
//www.doi.org/10.1145/3385412.3385988

[12] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-
based synthesis for complex apis,” in Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, 2017,
pp. 599–612. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/
3009837.3009851

[13] K. Ferdowsi, R. Huang, M. B. James, N. Polikarpova, and
S. Lerner, “Validating AI-generated code with live programming,”
in Proceedings of the 2024 CHI Conference on Human Factors
in Computing Systems, 2024, pp. 1–8. [Online]. Available: https:
//www.doi.org/10.1145/3613904.3642495

[14] K. Ferdowsifard, S. Barke, H. Peleg, S. Lerner, and N. Polikarpova,
“LooPy: interactive program synthesis with control structures,”
Proceedings of the ACM on Programming Languages, vol. 5, no.
OOPSLA, pp. 1–29, 2021. [Online]. Available: https://www.doi.org/10.
1145/3485530

[15] K. Ferdowsifard, A. Ordookhanians, H. Peleg, S. Lerner, and
N. Polikarpova, “Small-step live programming by example,” in
Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, 2020, pp. 614–626. [Online]. Available:
https://www.doi.org/10.1145/3379337.3415869

[16] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure
transformations from input-output examples,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 229–239. [Online]. Available:
https://doi.org/10.1145/2737924.2737977

[17] N. Friedman, “Introducing GitHub Copilot: Your AI
pair programmer,” Feb 2022, accessed 2025/05/11. [On-
line]. Available: https://github.blog/news-insights/product-news/
introducing-github-copilot-ai-pair-programmer/

[18] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen,
“CodeHint: Dynamic and interactive synthesis of code snippets,”
in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 653–663. [Online]. Available: https://www.doi.
org/10.1145/2568225.2568250

[19] S. Gulwani, “Automating string processing in spreadsheets using
input-output examples,” ACM Sigplan Notices, vol. 46, no. 1, pp. 317–
330, 2011. [Online]. Available: https://www.doi.org/10.1145/1925844.
1926423

[20] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Communications of the ACM, vol. 55, no. 8, pp. 97–
105, 2012. [Online]. Available: https://www.doi.org/10.1145/2240236.
2240260

[21] S. Gulwani, O. Polozov, R. Singh et al., “Program synthesis,”
Foundations and Trends® in Programming Languages, vol. 4, no.
1-2, pp. 1–119, 2017. [Online]. Available: https://www.doi.org/10.1561/
2500000010

[22] R. L. Huang, P. J. Guo, and S. Lerner, “UNFOLD: Enabling
live programming for debugging GUI applications,” in 2024 IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2024, pp. 306–316. [Online]. Available: https:
//www.doi.org/10.1109/VL/HCC60511.2024.00041

[23] M. B. James, Z. Guo, Z. Wang, S. Doshi, H. Peleg, R. Jhala,
and N. Polikarpova, “Digging for fold: synthesis-aided api discovery
for haskell,” Proceedings of the ACM on Programming Languages,
vol. 4, no. OOPSLA, pp. 1–27, 2020. [Online]. Available: https:
//dl.acm.org/doi/pdf/10.1145/3428273

[24] D. Jayagopal, J. Lubin, and S. E. Chasins, “Exploring the
learnability of program synthesizers by novice programmers,” in
Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3526113.3545659

[25] S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra, “Meminsight:
platform-independent memory debugging for javascript,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 345–356. [Online]. Available: https://dl.acm.org/doi/10.1145/
2786805.2786860

[26] M. B. Kery, “Tools to support exploratory programming with data,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2017, pp. 321–322. [Online]. Available:
https://www.doi.org/10.1109/VLHCC.2017.8103490

[27] M. B. Kery, A. Horvath, and B. A. Myers, “Variolite: Supporting
exploratory programming by data scientists.” in CHI, vol. 10, 2017, pp.
3 025 453–3 025 626. [Online]. Available: https://www.doi.org/10.1145/
3025453.3025626

[28] M. B. Kery and B. A. Myers, “Exploring exploratory programming,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2017, pp. 25–29. [Online]. Available:
https://www.doi.org/10.1109/VLHCC.2017.8103446

[29] A. J. Ko and B. A. Myers, “Designing the Whyline: a debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI conference on Human factors in computing systems,
2004, pp. 151–158. [Online]. Available: https://www.doi.org/10.1145/
985692.985712

[30] ——, “Debugging reinvented: asking and answering why and why
not questions about program behavior,” in Proceedings of the 30th
International Conference on Software Engineering, ser. ICSE ’08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
301–310. [Online]. Available: https://doi.org/10.1145/1368088.1368130

[31] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 82–92. [Online]. Available:
https://doi.org/10.1145/3180155.3180242

[32] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based
debugging,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 2017, pp. 393–403. [Online].
Available: https://www.doi.org/10.1109/ICSE.2017.43

[33] Y. Liu, P. Nie, O. Legunsen, and M. Gligoric, “Inline tests,” in
Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’22. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3556952

[34] J. Lubin, N. Collins, C. Omar, and R. Chugh, “Program sketching with
live bidirectional evaluation,” Proceedings of the ACM on Programming
Languages, vol. 4, no. ICFP, pp. 1–29, 2020. [Online]. Available:
https://www.doi.org/10.1145/3408991

[35] T. Mattis, P. Rein, and R. Hirschfeld, “Edit transactions: Dynamically
scoped change sets for controlled updates in live programming,” Art
Sci. Eng. Program., vol. 1, no. 2, p. 13, 2017. [Online]. Available:
https://doi.org/10.22152/programming-journal.org/2017/1/13

[36] Microsoft, “Visual Studio Code,” https://github.com/microsoft/vscode,
2015, accessed: 2025-05-05.

[37] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer, “Live functional
programming with typed holes,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, pp. 1–32, 2019. [Online].
Available: https://www.doi.org/10.1145/3290327

[38] H. Peleg, R. Gabay, S. Itzhaky, and E. Yahav, “Programming with
a read-eval-synth loop,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–30, 2020. [Online]. Available:
https://www.doi.org/10.1145/3428227

[39] H. Peleg, S. Shoham, and E. Yahav, “Programming not only by
example,” in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1114–1124. [Online]. Available:
https://doi.org/10.1145/3180155.3180189

[40] D. Rauch, P. Rein, S. Ramson, J. Lincke, and R. Hirschfeld,
“Babylonian-style programming,” The Art, Science, and Engineering
of Programming, vol. 3, no. 3, pp. 9–1, 2019. [Online]. Available:
https://www.doi.org/10.48550/arXiv.1902.00549

[41] M. B. Rosson and J. M. Carroll, “The reuse of uses in Smalltalk
programming,” ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 3, no. 3, pp. 219–253, 1996. [Online]. Available:
https://www.doi.org/10.1145/234526.234530

[42] D. W. Sandberg, “Smalltalk and exploratory programming,” ACM
Sigplan Notices, vol. 23, no. 10, pp. 85–92, 1988. [Online]. Available:
https://www.doi.org/10.1145/51607.51614

[43] M. Shaw, “Myths and mythconceptions: What does it mean
to be a programming language, anyhow?” 2021, keynote talk:
HOPL IV: History of Programming Languages. [Online]. Available:
https://www.pldi21.org/prerecorded hopl.K1.html

[44] B. Sheil, “Environments for exploratory programming,” Datamation,
vol. 29, no. 2, pp. 131–144, 1983.

[45] A. Solar-Lezama, “Program sketching,” Int. J. Softw. Tools Technol.
Transf., vol. 15, no. 5-6, pp. 475–495, 2013. [Online]. Available:
https://doi.org/10.1007/s10009-012-0249-7

[46] M. Taeumel, P. Rein, and R. Hirschfeld, “Toward patterns of exploratory
programming practice,” Design Thinking Research: Translation,
Prototyping, and Measurement, pp. 127–150, 2021. [Online]. Available:
https://www.doi.org/10.1007/978-3-030-76324-4 7

[47] M. Tahaei and K. Vaniea, “Recruiting participants with programming
skills: A comparison of four crowdsourcing platforms and a cs student
mailing list,” in Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, 2022, pp. 1–15.

[48] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M.
Martin, and R. Alur, “TRANSIT: specifying protocols with concolic
snippets,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 287–296, 2013.
[Online]. Available: https://www.doi.org/10.1145/2499370.2462174

[49] X. Wang, I. Dillig, and R. Singh, “Synthesis of data completion scripts
using finite tree automata,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, pp. 1–26, 2017. [Online]. Available:
https://www.doi.org/10.1145/3133886

[50] N. Weinman, S. M. Drucker, T. Barik, and R. DeLine, “Fork
It: Supporting stateful alternatives in computational notebooks,”
in Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445527

[51] R. Yen, J. S. Zhu, S. Suh, H. Xia, and J. Zhao, “CoLadder:
Manipulating code generation via multi-level blocks,” in Proceedings
of the 37th Annual ACM Symposium on User Interface Software and

Technology, 2024, pp. 1–20. [Online]. Available: https://www.doi.org/
10.1145/3654777.3676357

[52] A. Zeller, The Debugging Book. CISPA Helmholtz Center for Informa-
tion Security, 2024, ch. Introduction to Debugging, retrieved 2024-07-01
16:49:37+02:00. [Online]. Available: https://www.debuggingbook.org/

[53] T. Zhang, L. Lowmanstone, X. Wang, and E. L. Glassman, “Interactive
program synthesis by augmented examples,” in Proceedings of
the 33rd Annual ACM Symposium on User Interface Software
and Technology, 2020, pp. 627–648. [Online]. Available: https:
//www.doi.org/10.1145/3379337.3415900

