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Abstract. We address the problem of computing an abstraction for a set of ex-
amples, which is precise enough to separate them from a set of counterexamples.
The challenge is to find an over-approximation of the positive examples that does
not represent any negative example. Conjunctive abstractions (e.g., convex nu-
merical domains) and limited disjunctive abstractions, are often insufficient, as
even the best such abstraction might include negative examples. One way to im-
prove precision is to consider a general disjunctive abstraction.
We presentD3, a new algorithm for learning general disjunctive abstractions. Our
algorithm is inspired by widely used machine-learning algorithms for obtaining
a classifier from positive and negative examples. In contrast to these algorithms
which cannot generalize from disjunctions, D3 obtains a disjunctive abstraction
that minimizes the number of disjunctions. The result generalizes the positive
examples as much as possible without representing any of the negative examples.
We demonstrate the value of our algorithm by applying it to the problem of data-
driven differential analysis, computing the abstract semantic difference between
two programs. Our evaluation shows that D3 can be used to effectively learn
precise differences between programs even when the difference requires a dis-
junctive representation.

1 Introduction
We address the problem of computing an abstraction for a set of examples, which is
precise enough to separate them from a set of counterexamples. Given a set of positive
examples C+ and a set of negative examples C−, both drawn from some concrete
domain D, our goal is to compute an abstraction of C+ using a disjunctive abstract
domain, such that the abstraction overapproximates C+, but does not represent any
example from C−.

The need for such an abstraction arises in many settings [32, 5, 13], including the
problem of differential analysis - computing the abstract semantic difference between
two programs [28, 29, 35]. The abstract semantic difference between two programs of-
ten contains ranges of input values for which the programs are known to produce the
same outputs, but other ranges for which the output values differ. Computing a safe
abstraction of difference/similarity ranges can produce a succinct description of the dif-
ference/similarity between programs.

Unfortunately, computing such an abstraction is tricky due to the delicate inter-
play between generalization and precision (required to ensure that the abstraction is
safe). When there are multiple ranges of equivalence or difference, typical conjunctive
abstractions (e.g., convex numerical domains [24, 11]) and limited disjunctive abstrac-
tions [23, 30, 6, 3, 15], are often insufficient, as even the best such abstraction might



include negative examples. On the other hand, general (unlimited) disjunctive abstrac-
tions are too precise and do not naturally generalize.

We present D3, a new Data-Driven algorithm for learning general Disjunctive ab-
stractions. D3 is an active learning algorithm that iteratively accepts an example and its
label as positive or negative, and incrementally updates the disjunctive abstraction of all
examples seen.D3 is driven by a new notion of safe generalization used to compute the
abstraction of the seen examples. Safe generalization generalizes a precise disjunctive
abstraction of the positive examples into a more abstract one, but does so in a safe way
that does not represent any negative example.

The exploration of the input space is directed by D3 by restricting the sampling to
advantageous regions of the space derived from the intermediate abstractions.

D3 is a general algorithm and can be instantiated with different choices for the
following: (i) an oracle responsible for picking the next sample input from a given
region, (ii) an implementation of a teacher, used to label each sample, and (iii) the
abstract domain over which disjunctive abstractions are computed.

To implement differential analysis, we instantiate D3 with a code-aware oracle for
picking the next input, a teacher that labels an input by executing both programs and
comparing outputs, and several abstractions including intervals, congruence intervals,
and boolean predicates over arrays.

The main contributions of this paper are:

– A new operation, safe generalization, which takes a disjunctive abstraction and
generalizes it further while avoiding describing a set of counterexamples.

– A new algorithm D3 for learning general disjunctive abstractions, which uses safe
generalization, as well as a strategy to direct exploration of the input space.

– An implementation of D3 and its application to the problem of data-driven differ-
ential analysis, computing the abstract semantic difference between two programs.
Our evaluation shows that D3 can be used to effectively learn precise differences
between programs even when the difference requires a disjunctive representation.

2 Overview
In this section, we provide an informal overview of our approach using a differential
analysis example. Fig. 1 shows two functions computing the sum of digits in a number.

Fig. 1(a) is a model Scala implementation for summing the digits of an input num-
ber. Fig. 1(b) is an implementation by a less experienced programmer that uses a loop
construct rather than the tail recursive approach. While the second implementation is
very similar to a correct implementation, it suffers from an incorrect initialization of the
result variable, which is easily missed with poor testing.

The goal of differential analysis is to compute an abstract representation of the
difference between programs. For the programs of Fig. 1, the difference can be de-
scribed as

∨
i∈{1..9}(x mod 10 = i) ∧ (x ≤ −11 ∨ x ≥ 11). The similarity be-

tween these two programs (inputs for which the programs agree) can be described as (x
mod 10 = 0) ∨ (−9 ≤ x ≤ 9).

We use an active learning approach for computing the difference between the pro-
grams. In active learning, a learner iteratively picks points and asks a teacher for the



1 def sumOfDigits(x : Int) : Int = {
2 @tailrec def sodRec(
3 sum : Int,
4 rest : Int) : Int = {
5 if (rest == 0) sum
6 else sodRec(sum + rest % 10, rest/10)
7 }
8 sodRec(0,Math.abs(x))
9 }

1 def sumOfDigitsWrong(x : Int) : Int = {
2 var y = Math.abs(x)
3 if (y < 10) y
4 else {
5 var sum = y % 10
6 while (y > 0) {
7 sum += y % 10
8 y = y / 10
9 }

10 sum
11 }
12 }

(a) (b)

Fig. 1: Two Scala functions for computing the sum of a number’s digits. (a) is a correct
implementation. (b) has an error in initializing the variable sum and is correct only on
numbers that have 0 as the least significant digit, or on single-digit numbers.

classification of each point. The result of active learning is a classifier that generalizes
from the observed points and can be used to classify new points.

In our example, the learner is trying to learn the difference between two programs P
and P ′. We provide a simple teacher that runs the programs and classifies a given input
point c as “positive” when both programs produce the same result, i.e. P (c) = P ′(c),
and “negative” when the results of the two programs differ, i.e. P (c) 6= P ′(c).

Our starting point is the Candidate Elimination algorithm, presented formally in the
next section. Candidate Elimination proceeds iteratively as follows: in each iteration of
the algorithm, the learner picks a point to be classified, asks the teacher for a classifica-
tion, and updates an internal representation that captures the classification that has been
learned so far. Based on this internal representation, the learner can pick the next point
to be classified. The iterative process is repeated until the generalization of the positive
points and the exclusion of the negative points yields the same representation.

Applying the algorithm to our example program yields the following points:

(0, pos), (7, pos), (10, pos), (60, pos), (47, neg), (73, neg), (88, neg)

The challenge is how to internally represent the set of positive points and the set
of negative points. The set of positive points cannot be directly represented using a
conjunctive (convex) representation, as the range [0, 60] also includes the negative point
47. On the other hand, the negative range [47, 88] also includes the positive point 60.

Trying to represent the positive points using a precise disjunctive representation
yields no generalization in the algorithm (Section 3.2), and would yield the formula:
x = 0 ∨ x = 7 ∨ x = 10 ∨ x = 60. This disjunction would grow as additional positive
points are added, does not provide any generalization for points that have not been seen,
and cannot represent an unbounded number of points.

The D3 Algorithm The main idea of the D3 algorithm (Algorithm 2) is to incremen-
tally construct a generalized disjunctive representation for the positive and negative
examples. Technically, D3 operates by maintaining two formulas: ϕpos that maintains



the generalized disjunction representing positive examples, and ϕneg that maintains the
generalized disjunction representing the negative examples. The algorithm preserves
the invariant that ϕpos and ϕneg both correctly classify all seen points. That is, any seen
positive point satisfies ϕpos, and any seen negative point satisfies ϕneg . When a new
point arrives,D3 uses the generalization of the conjunctive domain as much as possible,
but uses disjunctions when needed in order to exclude points of opposite classification.

In the differential analysis setting, ϕpos attempts to describe the similarity between
programs and ϕneg attempts to describe the difference. For the example points above,
the algorithm constructs the following ϕpos: (7 ≤ x ≤ 7∧x mod 10 = 7)∨(0 ≤ x ≤
60∧ x mod 10 = 0). Note that this representation correctly generalizes to include the
positive points 20, 30, 40, 50 that were not seen. The resulting ϕneg is (47 ≤ x ≤ 47∧x
mod 10 = 7) ∨ (73 ≤ x ≤ 88).

The existence of points that satisfy both ϕneg and ϕpos does not contradict the
invariant of the algorithm because both formulas include unseen points due to general-
ization. In fact, the points in the intersection can be used to refine the generalization.
Technically, this is done by using the intersection as one of the regions to be sampled.

Fig. 2: The regions of the input space as seen by the D3 algorithm

In addition to ϕpos and ϕneg , the algorithm maintains ϕS and ϕ¬G, the precise dis-
junctive representations of the positive and negative examples, respectively. Together,
the four formulas determine the regions to be sampled, as depicted in Fig. 2:

– Uncovered: ¬(ϕpos ∨ ϕneg)
– Covered disagreement: ϕpos ∧ ϕneg

– Positive abstracted disagreement: ϕpos ∧ ¬ϕS

– Negative abstracted disagreement: ϕneg ∧ ¬ϕ¬G

The covered and uncovered are regions where a given point would either satisfy
both ϕpos and ϕneg , or neither. The positive abstract disagreement region is where a
point would satisfy the generalized disjunctive representation ϕpos but not the precise
disjunctive representation ϕS (that is, the point is the result of generalization). The
negative abstract disagreement plays a similar role for ϕneg and ϕ¬G.



Sampling from each of these regions ensures the algorithm would progress towards
abstracting and refining both positive and negative generalizations. Convergence will
occur if ϕpos and ¬ϕneg are equivalent, which means covered disagreement is elimi-
nated, and no region of the space is uncovered.

3 Active Concept Learning
Concept learning is an area of machine learning dedicated to learning a classifier that
is an abstraction of a dataset using a predefined language of predicates. This section
details the most commonly used concept learning algorithm, Candidate Elimination,
and its relation to abstract domains. We further discuss the limitations of Candidate
Elimination, which are later addressed by our new algorithm.
Concept learning Concept learning aims at learning a concept in a given concept lan-
guage. In our setting, a concept language would be used to describe the space of inputs
to a program. From now on, we fix an input space, denoted D (also called a domain).

Definition 1 (concept language). A concept of domain D is a boolean function a over
D. i.e. a : D → {true, false}. An element c ∈ D is described by the concept a if
a(c) = true. A concept language L is a set of concepts, i.e. L ⊆ {true, false}D.

Each concept describes a subset of D, and a concept language defines the set of
possible subsets available to describe the domain. A concept language is usually defined
by a set of possible descriptions (templates) of boolean functions.

Example 1. The concept language of intervals includes all concepts described as [l, h] =
λx.l ≤ x ≤ h s.t. l, h ∈ N. [0, 42] is a concept in the intervals concept language, which
from a domain of integers describes the subset {0, 1, . . . , 42}.

Concept languages based on logical formulas Given a concept language L0, we view
its concepts (which are boolean functions) as atoms over which propositional formulas
can be constructed using logical connectives, such as negation, conjunction and dis-
junction, thus defining new concepts (boolean functions). For example, if a1, a2 ∈ L0,
then the formula ϕ = a1 ∧ a2 represents the function λx. a1(x) ∧ a2(x). Note that this
boolean function need not be in the original concept language L0. Thus, we obtain new,
richer, concept languages.

Definition 2 (Conjunctive concepts). Given a concept language L0, conjunctive con-
cepts over L0 (or simply conjunctive concepts) are concepts defined by a conjunction
of finitely many concepts from L0.

A cartesian productL1×. . .×Ln is a special case of a conjunctive concept language
over L0 =

⋃
1≤i≤n Li, where the concepts are tuples comprised of one concept from

each Li, with the meaning of conjunction.
For example, the concept language of rectangles in 2D over a domain consisting of

pairs (x, y), is the product of two interval concept languages, one bounding the x axis
and the other bounding the y axis, and therefore it is a conjunctive concept language.

Disjunctive concepts are defined similarly to conjunctive concepts. A disjunctive
concept language over L0 corresponds to the powerset domain over L0 [10]. We there-
fore denote it P(L0).



Concept lattices Concept learning algorithms such as Candidate Elimination [25] are
based on the fact that every concept language L has an inherent partial order, denoted
�, based on the implication relation between the individual concepts, defined in [25]
as the more specific than relation. Formally, a1 � a2 if and only if for every c ∈ D,
a1(c)⇒ a2(c). For example, c ∈ [1, 4]⇒ c ∈ [0, 80] which means [1, 4] � [0, 80].

We are particularly interested in cases where this partially ordered set, (L,�),
forms a lattice. We assume that all concept languages include ⊥ = λx.false and
> = λx.true, which are the least and greatest concepts w.r.t. �, respectively. For
instance, in the intervals lattice, [1, 3] t [5, 8] = [1, 8], and [1, 3] u [5, 8] = ⊥.

Concepts as abstractions We view a concept language L as an abstract domain for D,
accompanied by a concretization function γ : L→ 2D that transforms a concept a ∈ L
into all of its described objects, and an abstraction function β : D → L which trans-
forms an element c ∈ D to the most specific concept representation.3 In the intervals
concept language, for example, β(c) = [c, c] for every c ∈ D. Note that by definition of
the � relation, a1 � a2 ⇐⇒ γ(a1) ⊆ γ(a2).
3.1 Candidate Elimination

Candidate Elimination is a machine learning algorithm aimed at learning a binary clas-
sifier fromD to the categories “positive” and “negative”. The input to the algorithm is a
set of positive examples C+ ⊆ D and a set of negative examples C− ⊆ D. The output
is a classifier, given as a concept, also called hypothesis, that is consistent with all the
examples.

Definition 3 (consistency). A hypothesis h is consistent with a set of positive examples
C+ and a set of negative examples C− if and only if for every c ∈ C+ ∪ C−, h(c) =
true ⇐⇒ c ∈ C+ .

The Candidate Elimination algorithm holds a lower bound and an upper bound of
possible consistent hypotheses in the lattice, representing all the lattice elements inbe-
tween. Every concept below the upper bound excludes all the concrete points the upper
bound excludes, and every concept above the lower bound includes all points that the
lower bound includes. The hypotheses represented by the upper and lower bound cre-
ated by processing a concrete set C = C+ ∪ C− are called the version space of C.

Algorithm 1 describes the full Candidate Elimination algorithm. In the code, we use
a function label(x) which for x ∈ D returns either “positive” or “negative”. In the case
of predefined sets of pointsC+, C−, label is a partial function defined forC+∪C− that
will return positive if and only if x ∈ C+. In the active learning case, it will compute
the label for any point in D. In this case it will also be called a teacher.

The algorithm starts with a specific (lower) bound, S = ⊥4 and a set of generic
(upper) bounds G = {>} (every element in G is a possible generic bound). Using
concrete examples from the sets C+ and C−, the algorithm advances its hypotheses

3 A most specific representation need not exist. For simplicity of the presentation, we consider
the case where it does, and explain what adaptations are needed when it does not.

4 If β maps a concrete point to a single concept which best represents it, it is easily shown that
it suffices to maintain S as a single element. Candidate Elimination can also handle multiple
representations, in which case S will be a set of specific bounds, similarly to G.



Algorithm 1: The Candidate Elimination algorithm formulated in abstract do-
main operations
1 S ← ⊥
2 G← {>}
3 for c← Samples do
4 if label(c) is positive then S ← S t β(c)
5 else G← {g u n | g ∈ G,n ∈ comp−({c})}
6 G← {g ∈ G | S v g}
7 if G = ∅ then
8 return ⊥
9 if S ∈ G then return S
// Training examples ran out but S and G have not converged

10 return some hypothesis bound between S and G

bounds from either direction until the lower and upper bound converge. For any positive
example c, the algorithm modifies S to include c, and for every negative example c′,
it modifies all the bounds in G to eliminate concepts that include c′. If the concept
language used is a lattice, it is easy to describe the Candidate Elimination algorithm in
terms of lattice operations. Modifying the bounds to include and exclude examples is
done with the join and meet operations, walking through the implication lattice.

The increase of the specific bound uses the abstraction function β. In order to de-
scribe the lowering of the generic bound, we define the set which is the underapproxi-
mated complementation of a set, comp−.

Definition 4 (underapproximated complementation). Given a set of concrete points
C ⊆ D, comp−(C) is the underapproximating complement of C. comp−(C) ⊆ L s.t.

– Complementation: ∀a ∈ comp−(C). γ(a) ∩ C = ∅, and
– Maximal underapproximation: ∀a ∈ L. γ(a) ∩ C = ∅ ⇒ ∃a′ ∈ comp−(C) :
a � a′

For some abstract domains comp− is an inexpensive operation. For example, in the
interval domain its complexity is O(|C|): comp−({2, 7}) = {(−∞, 1], [3, 6], [8,∞)},
and so on for larger sets. For other domains, however, comp− will be costly or even
not computable. Section 5 discusses several domains, including a boolean predicate
domain, where comp− causes Candidate Elimination to be non-feasible to compute.

Example 2. Using a concept language of intervals, we initialize S = ⊥ and G = {>}
and begin processing examples. The first example is c = 0, and label(0) is negative.
To handle a negative point, comp−({c}) = {(−∞,−1], [1,∞)} is computed, then the
new value of G = {> u (−∞,−1],> u [1,∞)} = {(−∞,−1], [1,∞)}. All members
of G are equal or greater than S (and therefore consistent), so no filtering is required.

A second sample seen is c′ = 2 and label(2) is positive. To handle a positive sample,
the algorithm computes β(c′) = [2, 2] and then computes the new value of S = ⊥ t
[2, 2] = [2, 2]. We can now see that one of the members ofG is no longer consistent with
c′, since if it were selected it would label c′ as negative, which makes it incomparable
with S, so it is filtered, yielding G = {[1,∞]}.



Candidate Elimination is a general algorithm, which can be used both for active
learning and offline learning from a given set of points. It has several active learning
variations, including the CAL [8] andA2 [4] algorithms for active version space concept
learning. Since in active learning the algorithm itself selects the next point that will be
labeled, these algorithms address the problem of selecting an advantageous next point.
For this, they define the region of disagreement, as the set of all the points for which
some two hypotheses that are currently viable disagree:

Definition 5 (Region of disagreement). The region of disagreement (sometimes region
of uncertainty) [8] for a version space V is RV = {c ∈ D | ∃h1, h2 ∈ V : h1(c) 6=
h2(c)}.

Selecting the next example from this region would guarantee the elimination of at
least one hypothesis with every step.

The final result of candidate elimination would be one of the following: a single
classifier S =

⊔
c∈C+ β(c), if S and G converge; no classifier, if S and G become

inconsistent; or a (possibly infinite) range of classifiers described by the hypotheses
bound between S and G, from which one or more can be selected.

3.2 Unbiased Learning

The concepts supported by the Candidate Elimination algorithms are conjunctive (specif-
ically, cartesian concepts), and the need to find the next hypothesis that will be con-
sistent with all examples while using only conjunction is the learner’s bias. Bias is
the way it generalizes about data it has not seen. However, as the following example
demonstrates, for the case of programs, conjunctive concepts are not enough:

Example 3. Consider the differential analysis of f(x)=x and g(x)=if (abs(x) <

1000) 0 else x using the intervals concept language. These programs differ in in-
tervals [−1000,−1] and [1, 1000], and are the same in [MinInt,−1001], [0, 0] and
[1001,MaxInt], so describing the difference (or similarity) using intervals requires
disjunction. However, the (conjunctive) intervals language only allows to bound a set
of points using a single interval. Thus, any concept describing all the positive points
(where the programs agree) will also include negative points (where the programs dis-
agree) and vice versa. Specifically, candidate elimination will finish as inconsistent if it
sees a single negative sample amidst the positive samples.

Unbiased learning When disjunctions are added, more complex concepts can be de-
scribed despite the limitation of the basic concept language L0 (this is equatable to the
powerset lattice over L0). However, the added freedom that comes with disjunctions
introduces a problem, which is inherent in the join operation of the powerset lattice:
a1ta2 = a1∨a2. If every specific example is generalized to β(c) and then joined to the
rest, the specific lower bound will never become more abstract than ϕS =

∨
c∈C+ β(c).

Similarly, if allowing arbitrary connectives, the generic upper bound will never become
more refined than ϕG =

∧
c∈C− ¬β(c).

This is what Mitchell calls “the futility of the unbiased learner” [25]. Once the
ability to abstract is lost, the hypotheses at the bounds of the version space will never
be able to answer yes or no about examples they have never seen, and unless the entire
space is sampled (if this is at all possible), they will never converge.



3.3 Unbiased learning by partitioning the space

Mitchell’s original work on version spaces [26] suggests handling an inconsistency that
requires disjunction by working with a pre-partitioned space and performing the can-
didate elimination algorithm separately in every partition. While this approach is the
most efficient, it requires prior knowledge of where the disjunctions are likely to occur,
and a more flexible concept language that allows for the partition. Murray’s tool HYDRA

[27] uses an operation equivalent to comp− to dynamically partition the domain using
the negative samples, creating regions where generalization is allowed. Every division
of the space may cause a recalculation of impacted abstract elements, which need to
be re-generalized within the newly created regions. In addition to requiring an efficient
comp−, HYDRA lacks a simple convergence condition, but rather is intended to run until
either samples run out or the teacher is “satisfied” with the resulting description.

4 Learning Disjunctive Abstractions
In this section we describe our algorithm for learning disjunctive concepts. Just as in
the Candidate Elimination algorithm, what we seek to find is a boolean function par-
titioning the input space into the positive and the negative sets, described using the
concept language. As in Candidate Elimination, we are dependent on the assumption
that this partition is expressible using the concept language. However, unlike Candidate
Elimination, we consider a disjunctive concept language, P(L).

From here on, we interchangeably describe disjunctive concepts inP(L) as disjunc-
tive formulas, e.g., a1∨a2, and as sets, e.g. {a1, a2}. Further, t always denotes the join
of L, as opposed to the join of P(L), which is simply disjunction or set union.

Our key idea is to combine the benefits of the generalization obtained by using the
join of L, with the expressiveness allowed by disjunctions. We therefore define a safe
generalization which generalizes a set of concepts (abstract elements) A ∈ P(L) in a
way that keeps them separate from a concrete set of counterexamples.

Definition 6 (Safe generalization). A safe generalization of a set of concepts A ∈
P(L) w.r.t. a concrete set of counterexamples Ccex ⊆ D is a set SG(A,Ccex) ∈ P(L)
which satisfies the following requirements:

1. Abstraction: ∀a ∈ A.∃a′ ∈ SG(A,Ccex). a � a′
2. Separation: ∀a ∈ SG(A,Ccex). γ(a) ∩ Ccex = ∅
3. Precision: ∀a ∈ SG(A,Ccex).∃A′ ⊆ A. a =

⊔
A′

We say that SG(A,Ccex) is maximal if whenever a ∈ L satisfies the separation and the
precision requirements, there exists a′ ∈ SG(A,Ccex) s.t. a � a′.

Note that the separation requirement is the same as the “complementation” require-
ment of comp−. Unlike the join of L which is restricted to return a concept in L,
SG(A,Ccex) returns a concept in P(L), and as such it can “refine” the result of join
in case

⊔
A does not satisfy the separation requirement. The precision requirement is

guided by the intuition that each a ∈ SG(A,Ccex), which represents a disjunct in the
learned disjunctive concept, should generalize in accordance with the generalization of
L and not beyond. If any of the conditions cannot be met, then SG(A,Ccex) is un-
defined. However, if γ(A) and Ccex are disjoint, then SG(A,Ccex) is always defined
because it will, at worst, perform no generalization and will return A.



Using safe generalization, we can define the “safe abstractions” of two setsC+, C−:
ϕpos = SG({β(c) | c ∈ C+}, C−), which characterizes the positive examples, or
ϕneg = SG({β(c) | c ∈ C−}, C+), which characterizes the negative examples (pro-
vided that SG is defined for them).

The ideal solution If C+ and C− partition the entire space and SG computes maximal
safe generalization, then ϕpos and ϕneg will be the optimal solutions, in the sense of
providing concepts with largest disjuncts which correctly partition D. Note that in the
case that the classifier is expressible as a concept in L, the ideal solution is equivalent
to the result of Candidate Elimination, which is simply

⊔
{β(c) | c ∈ C+}.

Since this definition, while optimal, is both unfeasible (for an infinite domain) and
requires SG, which like comp− may be very expensive to compute, we propose instead
a greedy algorithm to approximate it by directing the sampling of points in C+ and C−

and by implementing SG with a heuristic approximation of maximality.
Our algorithm, D3, is presented in Algorithm 2, and described below.

Two levels of abstraction D3 modifies the version space algorithms to keep four hy-
potheses, divided into two levels of abstraction.

In the first level of abstraction, ϕS , ϕ¬G ∈ P(L) are formula representations of the
minimal overapproximation of the points that have actually been seen. ϕS corresponds
to Candidate Elimination’s S, computed over P(L), for which join is simply disjunc-
tion. In an effort to simplify and only deal with disjunction and not negation, instead
of G which underapproximates D \ C−, we use ϕ¬G that abstracts C− directly. In the
second level of abstraction, ϕpos, ϕneg ∈ P(L) are added. These are incremental com-
putations of the definition above, which provide safe generalizations of ϕS w.r.t. the
current C−, and of ϕ¬G w.r.t. the current C+.

Technically, ϕS =
∨

c∈C+ β(c) and ϕpos =
∨
ψi s.t. ψi = β(ci1) t · · · t β(cik)

for some {ci1 , . . . , cik} ⊆ C+. It can be seen that C+ ⊆ γ(ϕS) ⊆ γ(ϕpos). Further,
both ϕS and ϕpos are consistent with all the examples seen (including negative ones).
Dually for C−, ϕ¬G and ϕneg .

D3 updates the formulas as follows. Every positive sample c that arrives is first
added to ϕS , and then if it is not already described by ϕpos, ϕpos is updated to a safe
generalization of ϕpos ∨ β(c). If ϕneg is inconsistent with c, then any disjunct ψi ∈
ϕneg for which ψi(c) = true is refined by collapsing it into its original set of points,
abstracting them using β and re-generalizing while considering the new point. Unlike
Candidate Elimination, D3 is symmetrical for positive and negative samples, hence
negative samples are handled dually.

D3 converges when ϕpos and ϕneg constitute a partition of D. This means that
ϕpos ≡ ¬ϕneg . This requires that in terms of expressiveness, the partition can be de-
scribed both positively and negatively.

Greedily computing safe generalization Like comp−, computing SG naively is doubly-
exponential. We therefore use a greedy strategy. SG first finds all the subsets of the
input whose join is consistent. This is done inductively bottom-up, based on the fact
that if a1 t a2 is inconsistent with some point c, then a1 t a2 t a3 will be as well. This
means the bottom-up construction can stop generalizing at smaller subsets. From the
computed consistent generalized concepts, a coverage of the input is selected greedily
using a cardinality function: P(L)→ N that assigns a value to the desirability of a sub-



Algorithm 2: The D3 algorithm
Input: O oracle, label teacher function

1 ϕpos ← false; ϕneg ← false
2 ϕS ← false; ϕ¬G ← false
3 C+ ← ∅; C− ← ∅
4 while ((ϕpos ∨ ϕneg 6≡ true) ∨ (ϕpos ∧ ϕneg 6≡ false)) ∧ ¬timeout do

// Check for consistency
5 cpos ← O |ϕS ; cneg ← O |ϕ¬G
6 if label(cneg) is positive ∨ label(cpos) is negative then
7 return no classifier

// Sample every region of disagreement
8 c1 ∈ O |¬ϕpos∧¬ϕneg

9 c2 ∈ O |ϕpos∧ϕneg

10 c3 ∈ O |ϕpos∧¬ϕS

11 c4 ∈ O |ϕneg∧¬ϕ¬G
12 C = {c1, c2, c3, c4}
13 for c← C do
14 if label(c) is positive then
15 ϕS ← ϕS ∨ β(c)
16 if ¬ϕpos(c) then ϕpos ← SG(ϕpos ∨ β(c), C−);
17 if ϕneg(c) then ϕneg ← refine(ϕneg, c, C

−, C+);
18 C+ ← C+ ∪ {c}
19 else // Symmetrical
20 ϕ¬G ← ϕ¬G ∨ β(c)
21 if ¬ϕneg(c) then ϕneg ← SG(ϕneg ∨ β(c), C+);
22 if ϕpos(c) then ϕpos ← refine(ϕpos, c, C

+, C−);
23 C− ← C− ∪ {c}
24 return ϕpos, ϕneg

Function SG(ϕ = ψ1 ∨ · · · ∨ ψk, Ccex)
1 consistent← {{ψj} 7→ ψj | 1 ≤ j ≤ k} // lvl = 1
2 for lvl← 2 . . . k do
3 prevLvl← {S | S ∈ P({ψ1, . . . , ψk}), |S| = lvl − 1, S ∈ dom(consistent)}
4 pairs← {(S, S′) | S, S′ ∈ prevLvl, |S ∪ S′| = lvl}
5 for (S, S′)← pairs do

// Can be optimized to not check the same S ∪ S′ twice
6 if S ∪ S′ 6∈ dom(consistent) then
7 a← consistent[S] t consistent[S′]
8 if γ(a) ∩ Ccex = ∅ then
9 consistent← consistent ∪ {S ∪ S′ 7→ a}
10 seen← ∅; res← ∅
11 while seen 6= {ψ1, . . . , ψk} do
12 joint← argmaxx{cardinality(x) | x ∈ dom(consistent), x ∩ seen = ∅}
13 seen← seen ∪ joint
14 res← res ∪ consistent[joint]
15 return

∨
res



Function refine(ϕ = ψ1 ∨ · · · ∨ ψk, c, Cabstracted, Ccex)
1 contradicting ← {ψi | ψi(c), 1 ≤ i ≤ k}
2 consistent← {ψi | 1 ≤ i ≤ k} \ contradicting
3 for ψ ← contradicting do
4 concrete← {c′ ∈ Cabstracted | ψ(c′)}
5 generalized← SG(

∨
{β(c′) | c′ ∈ concrete}, Ccex)

6 consistent← SG(consistent ∪ {θi | generalized = θ1 ∨ · · · ∨ θj}, Ccex)

7 return
∨
consistent

set of L to the coverage. A default cardinality function returns the number of concepts
in the subset, preferring a generalized element created from the largest subset, but some
domains allow for a better one. This greedy selection no longer ensures maximality.

If the domain is assured to be one for which comp− is efficient to compute, HY-
DRA’s technique (Section 3.3) can be used to partition the space so that re-joining after
a contradiction has been refined around is linear. While this is not always possible, the
greedy computation of SG is improved to an exponential operation. Care is taken to
always perform it on the fewest possible elements. With the exception of backtracking
(calls to refine that do collapse a disjunct), calls to SG will encounter a set of ele-
ments most of which cannot be joined to each other, and the computation will never try
computing any larger joins containing them.

Example 4. In sampling inputs for f(x) and g(x) from Example 3, using intervals
as our concept language, consider the case where the algorithm has already seen the
concrete points: {0, 1002,−837} which means it has learned ϕS = [0, 0] ∨ [1002, 1002]

and ϕ¬G = [−837,−837]. (Recall that positive points correspond to program similarity
and negative points correspond to a difference.) It has also generalized ϕpos = [0, 1002],
as right now it is a valid hypothesis that is not in contradiction with any data, and since
there is nothing to abstract, ϕneg = [−837,−837].

When the algorithm sees a new concrete point 478, for which f(478) 6= g(478), it
expands ϕ¬G to include the point. It also adds a second clause so ϕneg = [−837,−837]∨
[478, 478]. It then tries to generalize this using the intervals lattice, where [−837,−837]t
[478, 478] = [−837, 478] but this new classifier is consistent with the fact that f(0) =
g(0) and 0 ∈ [−837, 478]. This means these two points cannot be abstracted together.
Likewise, ϕpos is tested, and since 478 ∈ [0, 1002] it has become inconsistent, so it is
refined into [0, 0] ∨ [1002, 1002].

We examine another point, 10004, where f(10004) = g(10004), which is added to
ϕS and then toϕpos.ϕpos is now comprised of [0, 0]∨[1002, 1002]∨[10004, 10004]. While
[0, 1002] and [0, 10004] are inconsistent with what we know about 478, [1002, 10004] is
consistent, so we abstract ϕpos = [0, 0] ∨ [1002, 10004].

It should be noted that while ϕS and ϕ¬G advance in one direction, ϕpos and ϕneg

travel up and down the lattice in order to stay consistent.
Regions of disagreement As shown in Section 2, the four formulas maintained by D3

partition the region of disagreement (Definition 5) into four separate regions, which
can be seen in Fig. 2. The uncovered and covered disagreement regions represent a



classification disagreement between the two abstractions, and the positive and negative
abstracted disagreement are a classification disagreement between the bounds and the
abstractions. Since all four formulas are consistent with all previously processed points,
these will all be unsampled regions of the space.

Sampling the uncovered or covered disagreement regions is guaranteed to advance
the algorithm by either abstracting or refining at least one of the formulas. By sampling
the region with an oracle, advantageous points can be selected. In the case of sampling
ϕpos ∧ ¬ϕS or ϕneg ∧ ¬ϕ¬G (note that these formulas are not concepts in P(L), they
are just used as an interface to the oracle), it is possible that while the sampled point
will be added to ϕS or ϕ¬G, it will make no change in the generalized formulas, and in
essence not advance the algorithm toward convergence.

Timeout and consistency checks Like Candidate Elimination, if D3 recognizes that
the concept language is not descriptive enough to allow it to converge, it returns “no
classifier”. This will happen if the abstraction inherent in β causes inconsistency. To
test for this, the algorithm samples specifically for unseen points in ϕS and ϕ¬G and if
they indicate inconsistency, returns “no classifier”. If β is precise enough, there will be
no such unseen points, and this test will require no action.

Another option is that convergence is unattainable, either because the partition of the
space cannot be described by P(L) from neither the positive nor the negative direction,
which will cause a loop of ϕpos and ϕneg continuously generalizing to intersect each
other and refining to create uncovered space, or because the domain is infinite and not
advantageously sampled by the oracle. A timeout is introduced to stop the process. Our
experiments have shown a timeout of 2000 iterations to be sufficient. In case of timeout,
ϕpos and ϕneg can still be returned (as both are consistent with the seen points).

4.1 D3 on a fixed example set

If a fixed set of examples C is given to D3 along with a label function defined only
over C, which means there is no teacher to query about new samples, the convergence
condition no longer applies. D3 will run until samples are exhausted, and the role of
the oracle will no longer be to provide a new sample, but rather to order the samples so
that the algorithm will have to do as little backtracking as possible, and will be more
efficient than simply computing SG.

For example, for the intervals domain, the oracle would return the samples in as-
cending order, which would ensure no counterexample dividing an interval disjunct
would ever be provided.

5 Prototype Implementation and Evaluation
We have implemented the D3 algorithm in Scala for several domains, along with sev-
eral input sampling strategies (oracles). In this section we first describe the sampling
strategies and concept languages implemented in our differential analysis experiments.
We then describe our experimental results over a small but challenging set of programs.

5.1 Input Sampling Strategy

An ideal oracle would offer points that would lead D3 to finding every disjunct in the
desired ϕpos and ϕneg , and that would lead to convergence. It would also order the
samples so that the number of refinements would always be minimal, and the algorithm



would converge on a precise result using the fewest operations (However, note that the
result of D3 is not sensitive to order of the sampled points).

Coming up with an ideal oracle is in general undecidable. Instead, one may choose
between different heuristics for discovering interesting input values.

Naively, a requested region is sampled uniformly. However, this often misses sin-
gularity points (e.g., due to testing if (x != 0)). A slightly better approach is to use
biased sampling with tools such as ScalaCheck [1] that favor “problematic values” such
as 0, −1, or Int.MaxValue. Other techniques, typically used to increase test coverage
(e.g., concolic testing [33], whitebox fuzzing [16]), can be applied here as well.

Another practical solution is to use a grey-box approach. For instance, searching
the code for constants and operations, and generating from them a list of special values
that should be returned to the algorithm when they match one of the sampled regions.
We have implemented a constants-only oracle which has proved sufficient for all im-
plemented numerical domains.

5.2 Intervals and Intervals with Congruence

Intervals We use a standard intervals lattice [9] with |γ([l, h])| as a cardinality measure
for an interval [l, h]. This measure is easily computed and directs the greedy choice
towards the largest intervals.

D3 with the intervals domain has the property that if some point from a positive
or negative region is seen, the algorithm will not converge until the entire region is
discovered. This is because

⊔
({β(c) | c ∈ C}) = [l, h] only if l, h ∈ C, and since

in order for D3 to converge, the space needs to be covered (i.e. l − 1 and h + 1 are,
themselves, described by ϕpos or ϕneg), both sides of every boundary between ϕpos

and ϕneg are sampled. This means that the grey-box oracle would be adequate because
relevant points are likely to be present as constants in the code.

While intervals are useful for some examples (see Tab. 1), they cannot handle ex-
amples such as that in Fig. 1. Running D3 with intervals on Fig. 1 and assuming a finite
domain of 32-bit integers will only converge by sampling the whole domain. While a
full description of similarity ({[x, x] | x mod 10 = 0∧−2147483648 ≤ x ≤ 2147483647}
for a 32-bit integer) exists, it consists of 400 million separate disjuncts. And since these
disjuncts contain one concrete element each, they are also likely to never be discovered
and instead be overapproximated by the description of difference. What the interval
concept language lacks is the ability to abstract these into one description.

Intervals with congruence We consider a richer domain of intervals with congruences
for several divisors. Instead of using the full congruence abstract domain [17], we use
its collapsed versions to the divisors 2 through 10 that allow the information on sev-
eral different congruences to be preserved simultaneously. This allows us to learn the
similarity (x ≤ 2147483640 ∧ x ≥ −2147483640 ∧ x mod 2 = 0 ∧ x mod 5 = 0 ∧ x
mod 10 = 0) ∨ (x ≤ 9 ∧ x ≥ −9) for the example of Fig. 1.

Like intervals, the cardinality measure for intervals with congruence counts the
number of elements in the interval, accounting for all congruences that are not>. Using
the grey-box oracle, the Sum of digits example converges with the expected difference
of

∨
i∈1...9(x ≤ −1 ∧ x mod 10 = i) ∨ (x ≥ 11 ∧ x mod 10 = i).



Larger arities Both the intervals and intervals with congruence domains can be applied
to functions of different arities by using the product domain for as many arguments to
the function as necessary. We have implemented the domain Intervals × Intervals
for functions that take two int parameters.

Using the same grey-box oracle lifted to the product domain for two parameters,
and the area of the box as the cardinality function, we tested D3 on several samples
including the Quadrant test, in which the exercise is to take a point in the geometric
plane (x, y) and return the quadrant it is in. One implementation defines Quadrant I as
x > 0, y > 0 and the other as x ≥ 0, y ≥ 0, and the same for Quadrant II and IV.

This yields the difference of x = 0∨y = 0, and similarity of (x ≥ 1∧y ≥ 1)∨(x ≥
1 ∧ y ≤ −1) ∨ (x ≤ −1 ∧ y ≥ 1) ∨ (x ≤ −1 ∧ y ≤ −1).

5.3 Quantified boolean predicates over arrays

In the domain of quantified boolean predicates over arrays, comp− causes the number
of upper bounds to grow exponentially, which means Candidate Elimination is non fea-
sible to compute, even for simple conjunctive descriptions. D3 finds these descriptions,
as well as disjunctive ones.

Creating predicates Since we have no property or assertions from which to draw pred-
icates, we use a template-based abstraction, as in [21, 36, 34]. For simplicity, we use a
fixed set of predicate templates filtered by correctness on the concrete array, similar to
those used by the Houdini [14] and Daikon [12] annotation assistants.

The β function In our implementation β(c) is a conjunction of all the facts the tem-
plates discover about it. For very small arrays we can allow a precise beta function that
generates specific predicates for arr(0), arr(1), . . . . For larger arrays we keep more
compact facts such as: ∀i.(arr(i) ≤ arrMax ∧ arr(i) ≥ arrMin) for the maxi-
mum and minimum values in the array. This is not a precise β, which illustrates the
importance of the consistency check in Section 4.

Oracle The grey-box oracle approach, which works for most integer functions, is insuf-
ficient for arrays - the simple syntactic analysis of the code is insufficient for inferring
meaningful examples. To demonstrate the D3 algorithm, we provide our experiments
with a manual “oracle procedure” specific to the test.

The Find2 test finds the occurrence of 2 in an array without using array functions.
The spec implementation provided is simply arr.indexOf(2), and the tested imple-
mentation makes an off-by-one error failing to test arr(0). D3 learns the difference
arr(0) ≥ 2 ∧ arr(0) ≤ 2.

5.4 Experimental Evaluation

Tab. 1 compares each of the tests to the capabilities of a conjunctive method such as
joining all the samples of a large set of positive examples or running an active version
of Candidate Elimination. The columns for “conjunctive (difference)” and “conjunctive
(similarity)” signify whether the analysis would succeed if performed when treating the
different points or the similar points as C+.

Tests Example 3, Sum of Digits, Quadrant and Find2 have been discussed in
detail previously. Square tests the difference between two implementations of squaring
a number, one which casts to Long, and another that does not, thus causing an integer



test name
conjunctive
(difference)

conjunctive
(similarity)

D3

Intervals
Example 3 7 7 3

Square 7 3 3

StringAtIndex 7 7 3

Intervals IsOdd 7 3 3

with congruence Sum of Digits 7 7 3

Boxes
SolveLinEq 3 7 3

Quadrant 7 7 3

Boolean predicates Find2 7 7 3

over arrays ArrayAverage 7 7 3

ArrayMaximum 7 7 3

Table 1: Comparing the D3 algorithm to the capabilities of conjunctive algorithms

overflow, creating a difference in any number that is large enough or small enough so
that its square does not fit into an Integer. StringAtIndex returns the character at the
given index of a string, or null if the index is outside the bounds of the string, where one
implementation has an off-by-one error, causing the 0th place in the string to be returned
as null and an exception to be thrown at one past the end. IsOdd tests a parameter for
oddness, where one implementation incorrectly tests negative numbers. SolveLinEq
returns the solution to a linear equation ax2 + b = 0 where a, b are the arguments
of the functions. One implementation is undefined where a = 0 and the other only
when both a and b are zero. ArrayAverage averages the values in an array, where one
implementation is undefined (division by zero error) when the array is empty and the
other returns zero. ArrayMaximum searches for the maximum value in an array, where
one implementation has incorrect initialization of the maximum to 0 rather than the first
element, thereby returning an incorrect result when ∀i : arr(i) < 0.

As Tab. 1 shows, while some cases can be solved by attempting a conjunctive tech-
nique from both directions separately and taking one if its result has not become incon-
sistent, this will not work for others. In addition, in domains like predicates on arrays
where comp− is not available, the lowering of the upper bound is not available, so
only more primitive techniques such as generating a large number of samples with no
guidance and attempting their join remain.

6 Related Work

Disjunctive abstraction Since the original work introducing the powerset construction
for adding disjunction to a domain [10], there have been attempts to create a more prac-
tical abstraction that allows for disjunction but also for the abstraction that is limited
by the powerset domain’s join operation, as discussed in Section 3.2. The easiest lim-
itation which introduces bias is limiting the number of allowed disjuncts [23, 30, 6].
While this forces an abstraction once the number of disjoint elements is reached, it may
still be forced to cover a negative example because the number of elements allowed is
insufficient. Another is the finite powerset domain [2, 3] which keeps only the finite sets
in the powerset. However, this still retains the problem of the non-abstracting join.



The Boxes domain [20], based decision diagrams, is compact in representation even
for a large number of disjuncted boxes. It is specialized for the Integer× Integer do-
main, though the technique might be extendible to other domains. Donut domains [15]
allow for “holes” in a single convex set. This does not allow a disjunction of the positive
sets, and cannot be used with non-convex domains such as congruence.

Disjunctive approaches to Candidate Elimination Several methods have been men-
tioned in Section 3.3. In [22], every step of the algorithm maintains n representations
of the specific and general bounds from 1 to n disjuncts, where n is the number of
samples seen. Then, the desired option can be selected either by convergence or by
other criteria. This method is both wasteful in representation if many samples are re-
quired to cover the space, and the criteria for the best disjunction update are complex
and require additional learning algorithms. Sebag’s [31] approach learns a disjunction
of conjunctions of negative examples. This is meant to cope with noisy datasets, which
are irrelevant in the case of performing an abstraction, and decides at classification time
based on tuning, which means its output is not a description of the space but rather a
function capable of labeling individual points.

Abstracting with learning algorithms Thakur et al. [37] use a variation on Candidate
Elimination to compute symbolic abstraction. Gupta et al. [19] present an algorithm
for actively learning an automaton that separates the language of two models, called
the separating automaton. Like D3, this is an active learning algorithm based on ask-
ing a teacher to compute language inclusion. However, this algorithm is relevant only
to string languages (models and automata). Counterexample-driven abstraction refine-
ment techniques [5, 7, 18] for verification behave like a learning algorithm, requesting
“classification” of a point or a trace, and eliminating it from the abstract representation,
in much the same way as Candidate Elimination and D3 do.

7 Conclusion
We presented D3, an active learning algorithm for computing an abstraction of a set
of positive examples, separating them from a set of negative examples. A critical com-
ponent of D3 is the safe generalization operation which transforms an element in a
powerset domain into a more general element that does not intersect any negative point.
In cases where D3 can actively query additional points beyond an initial set, it aims at
learning a partition of the entire space (and not only abstract the initial samples). We
apply D3 to compute an abstract semantic difference between programs using several
abstract domains. We show thatD3 can compute a precise description of difference/sim-
ilarity for several small but challenging examples.
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